device_context.h 20.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
37
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
38
#include "mkldnn.hpp"
39
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
40 41
#endif

42
#include <map>
W
wanghuancoder 已提交
43

44
#include "glog/logging.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
47
#ifdef PADDLE_WITH_CUDA
48
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
49
#endif
Q
qijun 已提交
50
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
51

W
wanghuancoder 已提交
52 53 54 55 56
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

57 58
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
59
#include "paddle/fluid/platform/xpu_info.h"
60 61
#endif

Q
QI JUN 已提交
62 63 64
namespace paddle {
namespace platform {

65 66 67 68 69
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
70 71 72 73
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
74 75 76 77 78 79 80 81 82 83 84 85
#endif  // PADDLE_WITH_CUDA

enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;

Q
QI JUN 已提交
86 87
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
88
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
89
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
90

91
  virtual void Wait() const {}
Q
QI JUN 已提交
92 93
};

Q
qijun 已提交
94 95
class CPUDeviceContext : public DeviceContext {
 public:
96
  CPUDeviceContext();
Q
qijun 已提交
97
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
98

99
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
100

L
liaogang 已提交
101
  Place GetPlace() const override;
Y
Yu Yang 已提交
102

Q
qijun 已提交
103
 private:
D
dzhwinter 已提交
104
  CPUPlace place_;
Q
qijun 已提交
105
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
106 107
};

Y
Yang Yu 已提交
108 109 110 111 112 113 114 115
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

129 130 131 132 133 134 135 136
#ifdef PADDLE_WITH_XPU_BKCL
  /*! \brief  Return bkcl context. */
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

137 138 139
 private:
  XPUPlace place_;
  xpu::Context* context_;
140 141 142
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
143 144 145 146 147 148 149 150 151 152 153 154 155

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

156
#ifdef PADDLE_WITH_CUDA
157

158
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
159
class EigenCudaStreamDevice;
S
sneaxiy 已提交
160

161 162 163 164 165
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
166
      const stream::Priority& priority = stream::Priority::kNormal);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
186 187 188 189
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

190 191 192 193 194 195 196 197 198 199 200
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
201 202 203 204 205
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
232 233 234 235 236
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
255 256
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
257
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
258 259 260 261 262
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
263
  void InitCuSolverContext() {
264 265
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
266 267 268
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

269 270
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
271
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
272 273 274 275 276 277 278
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
279
    cublas_tf32_tensor_core_handle_.reset();
280 281
  }

G
Guo Sheng 已提交
282 283 284 285 286 287 288
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

289 290 291 292 293 294 295
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
296
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
G
Guo Sheng 已提交
297
  cusolverDnHandle_t cusolver_dn_handle_;
298 299 300
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

301
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
302
 public:
D
dzhwinter 已提交
303
  explicit CUDADeviceContext(CUDAPlace place);
304
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
305

306
  /*! \brief  Wait for all operations completion in the stream. */
307
  void Wait() const override;
Q
QI JUN 已提交
308

309
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
310
  Place GetPlace() const override;
311

K
Kexin Zhao 已提交
312
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
313 314
  int GetComputeCapability() const;

315 316 317
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

318 319 320 321 322 323
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

324 325 326
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

327 328 329
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

330 331 332
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
333
    return context()->CublasCall(callback);
334 335 336 337 338 339 340 341 342
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
343
    return context()->TensorCoreCublasCallIfAvailable(callback);
344
  }
S
sneaxiy 已提交
345

346
  /*! \brief  Return cudnn  handle in the device context. */
347
  cudnnHandle_t cudnn_handle() const;
348

349 350 351
  /*! \brief  Return cublas handle in the device context. */
  cublasHandle_t cublas_handle() const;

S
sneaxiy 已提交
352 353 354 355 356 357 358 359 360
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
361 362
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
363
  /*! \brief  Return cuda stream in the device context. */
364
  cudaStream_t stream() const;
Q
QI JUN 已提交
365

366
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
367 368 369 370 371
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
372
#endif
Q
qingqing01 已提交
373

Y
Yu Yang 已提交
374
  template <typename Callback>
375 376
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
377 378
  }

S
sneaxiy 已提交
379 380
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
381 382 383 384 385
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
386 387
  }

388
  void ResetDefaultContext(const stream::Priority& priority) {
389 390 391
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

392
  void ResetThreadContext(const stream::Priority& priority) {
393 394 395 396 397 398 399 400 401 402
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
403

Q
QI JUN 已提交
404
 private:
D
dzhwinter 已提交
405
  CUDAPlace place_;
406
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
407

408 409 410 411 412 413
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
414

415 416
  mutable std::mutex cudnn_handle_mtx_;

417
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
418 419 420 421 422 423
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
424
#endif
Q
qingqing01 已提交
425

C
chengduo 已提交
426 427 428 429 430
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
431
  int max_threads_per_block_;
432
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
433

434
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
435
};
Q
qijun 已提交
436

437 438
class CudnnWorkspaceHandle {
 public:
439 440
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
441 442 443 444 445 446 447 448

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
449 450 451 452
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
453 454 455 456 457 458 459 460 461 462 463 464 465
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

466
  void ReallocWorkspace(size_t required_workspace_bytes);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
483
  std::mutex* mtx_;
484 485
};

Y
Yang Yu 已提交
486 487
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
488
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
489 490
};

C
chengduoZH 已提交
491
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
492 493 494 495 496 497
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
498

C
chengduoZH 已提交
499 500 501 502 503 504 505 506 507 508 509
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
510
#endif
Q
qijun 已提交
511

T
tensor-tang 已提交
512
#ifdef PADDLE_WITH_MKLDNN
513 514 515 516 517 518

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
519
    bool said_once = false;
520 521 522 523 524 525 526 527 528 529 530
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
531 532
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
533 534 535 536 537 538 539 540

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
541
    void log_lib_version(void);
542 543 544 545
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
561

T
tensor-tang 已提交
562 563
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
581 582 583
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
584
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
585

586
  // Remove all entries from the blob map
587 588 589 590
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
591

592 593 594
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

595 596
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
597

598 599
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
600

601 602 603 604
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
605
 private:
606
  mkldnn::engine engine_;
607 608
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
609
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
610 611 612
};
#endif

D
dzhwinter 已提交
613 614 615 616 617
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
618
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
619 620 621
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
622 623 624 625
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
626
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
627 628 629 630 631 632
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

633 634
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
635
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
636
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
637

Y
Yang Yu 已提交
638 639 640 641 642 643 644
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

645 646
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
647 648
 private:
  static DeviceContextPool* pool;
649 650
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
651 652 653
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
654 655
}  // namespace platform
}  // namespace paddle