device_context.h 19.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
37
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
38
#include "mkldnn.hpp"
39
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
40 41
#endif

42
#include <map>
W
wanghuancoder 已提交
43

44
#include "glog/logging.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
47
#ifdef PADDLE_WITH_CUDA
48
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
49
#endif
Q
qijun 已提交
50
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
51

W
wanghuancoder 已提交
52 53 54 55 56
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

57 58
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
59
#include "paddle/fluid/platform/xpu_info.h"
60 61
#endif

Q
QI JUN 已提交
62 63 64
namespace paddle {
namespace platform {

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#ifdef PADDLE_WITH_CUDA
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
#endif  // PADDLE_WITH_CUDA

enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;

Q
QI JUN 已提交
82 83
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
84
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
85
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
86

87
  virtual void Wait() const {}
Q
QI JUN 已提交
88 89
};

Q
qijun 已提交
90 91
class CPUDeviceContext : public DeviceContext {
 public:
92
  CPUDeviceContext();
Q
qijun 已提交
93
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
94

95
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
96

L
liaogang 已提交
97
  Place GetPlace() const override;
Y
Yu Yang 已提交
98

Q
qijun 已提交
99
 private:
D
dzhwinter 已提交
100
  CPUPlace place_;
Q
qijun 已提交
101
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
102 103
};

Y
Yang Yu 已提交
104 105 106 107 108 109 110 111
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

125 126 127 128 129 130 131 132
#ifdef PADDLE_WITH_XPU_BKCL
  /*! \brief  Return bkcl context. */
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

133 134 135
 private:
  XPUPlace place_;
  xpu::Context* context_;
136 137 138
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
139 140 141 142 143 144 145 146 147 148 149 150 151

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

152
#ifdef PADDLE_WITH_CUDA
153

154
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
155
class EigenCudaStreamDevice;
S
sneaxiy 已提交
156

157 158 159 160 161
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
162
      const stream::Priority& priority = stream::Priority::kNormal);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
182 183 184 185
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
243 244
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
245
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
246 247 248 249 250
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
251
  void InitCuSolverContext() {
252 253
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
254 255 256
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

257 258
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
259
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
260 261 262 263 264 265 266 267 268
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
269 270 271 272 273 274 275
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

276 277 278 279 280 281 282
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
283
  cusolverDnHandle_t cusolver_dn_handle_;
284 285 286
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

287
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
288
 public:
D
dzhwinter 已提交
289
  explicit CUDADeviceContext(CUDAPlace place);
290
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
291

292
  /*! \brief  Wait for all operations completion in the stream. */
293
  void Wait() const override;
Q
QI JUN 已提交
294

295
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
296
  Place GetPlace() const override;
297

K
Kexin Zhao 已提交
298
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
299 300
  int GetComputeCapability() const;

301 302 303
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

304 305 306 307 308 309
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

310 311 312
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

313 314 315
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

316 317 318
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
319
    return context()->CublasCall(callback);
320 321 322 323 324 325 326 327 328
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
329
    return context()->TensorCoreCublasCallIfAvailable(callback);
330
  }
S
sneaxiy 已提交
331

332
  /*! \brief  Return cudnn  handle in the device context. */
333
  cudnnHandle_t cudnn_handle() const;
334

S
sneaxiy 已提交
335 336 337 338 339 340 341 342 343
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
344 345
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
346
  /*! \brief  Return cuda stream in the device context. */
347
  cudaStream_t stream() const;
Q
QI JUN 已提交
348

349
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
350 351 352 353 354
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
355
#endif
Q
qingqing01 已提交
356

Y
Yu Yang 已提交
357
  template <typename Callback>
358 359
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
360 361
  }

S
sneaxiy 已提交
362 363
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
364 365 366 367 368
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
369 370
  }

371
  void ResetDefaultContext(const stream::Priority& priority) {
372 373 374
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

375
  void ResetThreadContext(const stream::Priority& priority) {
376 377 378 379 380 381 382 383 384 385
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
386

Q
QI JUN 已提交
387
 private:
D
dzhwinter 已提交
388
  CUDAPlace place_;
389
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
390

391 392 393 394 395 396
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
397

398 399
  mutable std::mutex cudnn_handle_mtx_;

400
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
401 402 403 404 405 406
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
407
#endif
Q
qingqing01 已提交
408

C
chengduo 已提交
409 410 411 412 413
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
414
  int max_threads_per_block_;
415
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
416

417
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
418
};
Q
qijun 已提交
419

420 421
class CudnnWorkspaceHandle {
 public:
422 423
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
424 425 426 427 428 429 430 431

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
432 433 434 435
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
436 437 438 439 440 441 442 443 444 445 446 447 448
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

449
  void ReallocWorkspace(size_t required_workspace_bytes);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
466
  std::mutex* mtx_;
467 468
};

Y
Yang Yu 已提交
469 470
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
471
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
472 473
};

C
chengduoZH 已提交
474
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
475 476 477 478 479 480
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
481

C
chengduoZH 已提交
482 483 484 485 486 487 488 489 490 491 492
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
493
#endif
Q
qijun 已提交
494

T
tensor-tang 已提交
495
#ifdef PADDLE_WITH_MKLDNN
496 497 498 499 500 501

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
502
    bool said_once = false;
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
522
    void log_lib_version(void);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
538

T
tensor-tang 已提交
539 540
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
558 559 560
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
561
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
562

563
  // Remove all entries from the blob map
564 565
  void ResetBlobMap();

566 567 568 569
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

570
  // Disable adding  thread ID to the key
571 572
  void DisableThreadInfoInKey(void) { key_attach_thread_id_ = false; }
  bool IsThreadIdUsedInKey(void) const { return key_attach_thread_id_; }
573

574 575
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
576

577 578 579
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

580 581
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
582

583 584
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
585

586 587 588 589
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
590
 private:
591
  mkldnn::engine engine_;
592 593
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
594
  bool block_next_cache_clearing_ = false;
595
  std::string key_suffix_;  // Key identifying current Executor
596
  bool key_attach_thread_id_ = true;
T
tensor-tang 已提交
597 598 599
};
#endif

D
dzhwinter 已提交
600 601 602 603 604
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
605
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
606 607 608
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
609 610 611 612
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
613
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
614 615 616 617 618 619
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

620 621
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
622
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
623
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
624

Y
Yang Yu 已提交
625 626 627 628 629 630 631
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

632 633
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
634 635
 private:
  static DeviceContextPool* pool;
636 637
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
638 639 640
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
641 642
}  // namespace platform
}  // namespace paddle