device_context.h 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
25
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
29
#endif
D
dzhwinter 已提交
30

T
tensor-tang 已提交
31
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
32
#include "mkldnn.hpp"
T
tensor-tang 已提交
33 34
#endif

35 36
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
37 38
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
39 40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
42
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
43 44 45 46 47 48

namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
49
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
50
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
51

52
  virtual void Wait() const {}
Q
QI JUN 已提交
53 54
};

Q
qijun 已提交
55 56
class CPUDeviceContext : public DeviceContext {
 public:
57
  CPUDeviceContext();
Q
qijun 已提交
58
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
59

60
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
61

L
liaogang 已提交
62
  Place GetPlace() const override;
Y
Yu Yang 已提交
63

Q
qijun 已提交
64
 private:
D
dzhwinter 已提交
65
  CPUPlace place_;
Q
qijun 已提交
66
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
67 68
};

Y
Yang Yu 已提交
69 70 71 72 73 74 75 76
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

77
#ifdef PADDLE_WITH_CUDA
78

Q
qijun 已提交
79
class EigenCudaStreamDevice;
80
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
81

82
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
83
 public:
D
dzhwinter 已提交
84
  explicit CUDADeviceContext(CUDAPlace place);
85
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
86

87
  /*! \brief  Wait for all operations completion in the stream. */
88
  void Wait() const override;
Q
QI JUN 已提交
89

90
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
91
  Place GetPlace() const override;
92

K
Kexin Zhao 已提交
93
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
94 95
  int GetComputeCapability() const;

96 97 98
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

99 100 101
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

102 103 104
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
124

125
  /*! \brief  Return cudnn  handle in the device context. */
126
  cudnnHandle_t cudnn_handle() const;
127

S
sneaxiy 已提交
128 129 130 131 132 133 134 135 136
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
137
  /*! \brief  Return cuda stream in the device context. */
138
  cudaStream_t stream() const;
Q
QI JUN 已提交
139

Q
qingqing01 已提交
140
#if !defined(_WIN32)
Q
qingqing01 已提交
141 142 143 144 145
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
146
#endif
Q
qingqing01 已提交
147

Y
Yu Yang 已提交
148 149 150
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
151
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(ev, stream_));
Y
Yu Yang 已提交
152 153
  }

S
sneaxiy 已提交
154 155 156 157 158
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
159
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
160

Q
QI JUN 已提交
161
 private:
D
dzhwinter 已提交
162
  CUDAPlace place_;
Q
QI JUN 已提交
163

N
nhzlx 已提交
164
  mutable std::once_flag init_cudnn_;
165

Q
qijun 已提交
166
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
167
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
168
  cudaStream_t stream_;
169

170
  cudnnHandle_t cudnn_handle_;
171 172
  mutable std::mutex cudnn_handle_mtx_;

173 174
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
175

Q
qingqing01 已提交
176
#if !defined(_WIN32)
Q
qingqing01 已提交
177 178 179 180 181 182
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
183
#endif
Q
qingqing01 已提交
184

C
chengduo 已提交
185 186 187 188 189
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
190
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
191

S
fix bug  
sneaxiy 已提交
192
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
193
  std::unique_ptr<StreamCallbackManager> callback_manager_;
194

195
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
196
};
Q
qijun 已提交
197

198 199
class CudnnWorkspaceHandle {
 public:
200 201
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
202 203 204 205 206 207 208 209

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
210 211 212 213
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
214 215 216 217 218 219 220 221 222 223 224 225 226
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

227
  void ReallocWorkspace(size_t required_workspace_bytes);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
244
  std::mutex* mtx_;
245 246
};

Y
Yang Yu 已提交
247 248
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
249
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
250 251
};

C
chengduoZH 已提交
252
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
253 254 255 256 257 258
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
259

C
chengduoZH 已提交
260 261 262 263 264 265 266 267 268 269 270
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
271
#endif
Q
qijun 已提交
272

T
tensor-tang 已提交
273
#ifdef PADDLE_WITH_MKLDNN
274 275 276 277 278 279
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
280
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
281 282
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
283

284 285 286 287 288 289 290
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
291
void set_cur_input_shape_str(std::string input_shape_str);
292
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
S
Sylwester Fraczek 已提交
293

T
tensor-tang 已提交
294 295 296 297 298
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
299
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
300

301 302 303
  // Remove all entries from the blob map
  void ResetBlobMap() const;

304 305 306
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

307 308
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
309

310 311
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
312 313

 private:
314
  mkldnn::engine engine_;
315 316
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
317 318 319
};
#endif

D
dzhwinter 已提交
320 321 322 323 324
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
325
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
326 327 328 329 330
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
331
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
332 333 334 335 336 337
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

338 339
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
340
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
341
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
342

Y
Yang Yu 已提交
343 344 345 346 347 348 349
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

350 351
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
352 353
 private:
  static DeviceContextPool* pool;
354 355
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
356 357 358
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
359 360
}  // namespace platform
}  // namespace paddle