device_context.h 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
25
#include "paddle/fluid/platform/dynload/cusolver.h"
26
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
27
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
30
#endif
D
dzhwinter 已提交
31

T
tensor-tang 已提交
32
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
33
#include "mkldnn.hpp"
34
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
35 36
#endif

37 38
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
41
#ifdef PADDLE_WITH_CUDA
42
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
43
#endif
Q
qijun 已提交
44
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
45 46 47 48 49 50

namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
51
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
52
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
53

54
  virtual void Wait() const {}
Q
QI JUN 已提交
55 56
};

Q
qijun 已提交
57 58
class CPUDeviceContext : public DeviceContext {
 public:
59
  CPUDeviceContext();
Q
qijun 已提交
60
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
61

62
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
63

L
liaogang 已提交
64
  Place GetPlace() const override;
Y
Yu Yang 已提交
65

Q
qijun 已提交
66
 private:
D
dzhwinter 已提交
67
  CPUPlace place_;
Q
qijun 已提交
68
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
69 70
};

Y
Yang Yu 已提交
71 72 73 74 75 76 77 78
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

79
#ifdef PADDLE_WITH_CUDA
80

Q
qijun 已提交
81
class EigenCudaStreamDevice;
82
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
83

84 85 86 87 88
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
89
      const stream::Priority& priority = stream::Priority::kNormal);
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
109 110 111 112
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
170
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
171
      PADDLE_ENFORCE_CUDA_SUCCESS(
172
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
173 174 175 176 177
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
178 179 180 181 182 183 184
  void InitCuSolverContext() {
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

185 186
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
187
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
188 189 190 191 192 193 194 195 196
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
197 198 199 200 201 202 203
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

204 205 206 207 208 209 210
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
211
  cusolverDnHandle_t cusolver_dn_handle_;
212 213 214
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

215
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
216
 public:
D
dzhwinter 已提交
217
  explicit CUDADeviceContext(CUDAPlace place);
218
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
219

220
  /*! \brief  Wait for all operations completion in the stream. */
221
  void Wait() const override;
Q
QI JUN 已提交
222

223
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
224
  Place GetPlace() const override;
225

K
Kexin Zhao 已提交
226
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
227 228
  int GetComputeCapability() const;

229 230 231
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

232 233 234 235 236 237
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

238 239 240
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

241 242 243
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

244 245 246
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
247
    return context()->CublasCall(callback);
248 249 250 251 252 253 254 255 256
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
257
    return context()->TensorCoreCublasCallIfAvailable(callback);
258
  }
S
sneaxiy 已提交
259

260
  /*! \brief  Return cudnn  handle in the device context. */
261
  cudnnHandle_t cudnn_handle() const;
262

S
sneaxiy 已提交
263 264 265 266 267 268 269 270 271
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
272 273
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
274
  /*! \brief  Return cuda stream in the device context. */
275
  cudaStream_t stream() const;
Q
QI JUN 已提交
276

277
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
278 279 280 281 282
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
283
#endif
Q
qingqing01 已提交
284

Y
Yu Yang 已提交
285
  template <typename Callback>
286 287
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
288 289
  }

S
sneaxiy 已提交
290 291
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
292 293 294 295 296
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
297 298
  }

299
  void ResetDefaultContext(const stream::Priority& priority) {
300 301 302
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

303
  void ResetThreadContext(const stream::Priority& priority) {
304 305 306 307 308 309 310 311 312 313
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
314

Q
QI JUN 已提交
315
 private:
D
dzhwinter 已提交
316
  CUDAPlace place_;
317
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
318

319 320 321 322 323 324
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
325

326 327
  mutable std::mutex cudnn_handle_mtx_;

328
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
329 330 331 332 333 334
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
335
#endif
Q
qingqing01 已提交
336

C
chengduo 已提交
337 338 339 340 341
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
342
  int max_threads_per_block_;
343
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
344

345
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
346
};
Q
qijun 已提交
347

348 349
class CudnnWorkspaceHandle {
 public:
350 351
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
352 353 354 355 356 357 358 359

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
360 361 362 363
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
364 365 366 367 368 369 370 371 372 373 374 375 376
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

377
  void ReallocWorkspace(size_t required_workspace_bytes);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
394
  std::mutex* mtx_;
395 396
};

Y
Yang Yu 已提交
397 398
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
399
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
400 401
};

C
chengduoZH 已提交
402
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
403 404 405 406 407 408
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
409

C
chengduoZH 已提交
410 411 412 413 414 415 416 417 418 419 420
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
421
#endif
Q
qijun 已提交
422

T
tensor-tang 已提交
423
#ifdef PADDLE_WITH_MKLDNN
424 425 426 427 428 429
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
430
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
431 432
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
433

434 435 436 437 438 439 440
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
441
void set_cur_input_shape_str(std::string input_shape_str);
442
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
443 444
void set_cur_paddle_data_layout(framework::DataLayout);
framework::DataLayout get_cur_paddle_data_layout(void);
S
Sylwester Fraczek 已提交
445

T
tensor-tang 已提交
446 447 448 449 450
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
451
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
452

453 454 455
  // Remove all entries from the blob map
  void ResetBlobMap() const;

456 457 458
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

459 460
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
461

462 463
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
464 465

 private:
466
  mkldnn::engine engine_;
467 468
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
469 470 471
};
#endif

D
dzhwinter 已提交
472 473 474 475 476
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
477
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
478 479 480 481 482
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
483
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
484 485 486 487 488 489
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

490 491
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
492
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
493
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
494

Y
Yang Yu 已提交
495 496 497 498 499 500 501
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

502 503
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
504 505
 private:
  static DeviceContextPool* pool;
506 507
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
508 509 510
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
511 512
}  // namespace platform
}  // namespace paddle