device_context.h 16.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
25
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
29
#endif
D
dzhwinter 已提交
30

T
tensor-tang 已提交
31
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
32
#include "mkldnn.hpp"
33
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
34 35
#endif

36 37
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
38 39
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
40
#ifdef PADDLE_WITH_CUDA
41
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
42 43
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
44
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
45 46 47 48 49 50

namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
51
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
52
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
53

54
  virtual void Wait() const {}
Q
QI JUN 已提交
55 56
};

Q
qijun 已提交
57 58
class CPUDeviceContext : public DeviceContext {
 public:
59
  CPUDeviceContext();
Q
qijun 已提交
60
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
61

62
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
63

L
liaogang 已提交
64
  Place GetPlace() const override;
Y
Yu Yang 已提交
65

Q
qijun 已提交
66
 private:
D
dzhwinter 已提交
67
  CPUPlace place_;
Q
qijun 已提交
68
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
69 70
};

Y
Yang Yu 已提交
71 72 73 74 75 76 77 78
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

79
#ifdef PADDLE_WITH_CUDA
80

Q
qijun 已提交
81
class EigenCudaStreamDevice;
82
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
      const enum stream::Priority& priority = stream::Priority::NORMAL);

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const cudaStream_t& Stream() const { return stream_.stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaEventRecord(ev, stream_.stream()),
        platform::errors::Fatal("CUDA event recording failed."));
  }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

  void WaitStreamCallback() const { callback_manager_->Wait(); }

  void Wait() const {
    cudaError_t e_sync = cudaSuccess;
#if !defined(_WIN32)
    e_sync = cudaStreamSynchronize(stream_.stream());
#else
    while (e_sync = cudaStreamQuery(stream_.stream())) {
      if (e_sync == cudaErrorNotReady) continue;
      break;
    }
#endif

    PADDLE_ENFORCE_CUDA_SUCCESS(
        e_sync, platform::errors::Fatal(
                    "cudaStreamSynchronize raises error: %s, errono: %d",
                    cudaGetErrorString(e_sync), static_cast<int>(e_sync)));
  }

 private:
  void InitEigenContext(const stream::CUDAStream& stream);

  void InitCuBlasContext(const stream::CUDAStream& stream) {
    cublas_handle_.reset(
        new CublasHandleHolder(stream.stream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(stream.stream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCallbackManager(const stream::CUDAStream& stream) {
    callback_manager_.reset(new StreamCallbackManager(stream.stream()));
  }

  void InitCuDNNContext(const stream::CUDAStream& stream) {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnCreate(&cudnn_handle_),
          platform::errors::Fatal(
              "Failed to create Cudnn handle in DeviceContext"));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnSetStream(cudnn_handle_, stream.stream()),
          platform::errors::Fatal(
              "Failed to set stream for Cudnn handle in DeviceContext"));
    } else {
      cudnn_handle_ = nullptr;
    }
  }

  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnDestroy(cudnn_handle_),
          platform::errors::Fatal("Failed to destory Cudnn handle"));
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  stream::CUDAStream stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
  std::unique_ptr<StreamCallbackManager> callback_manager_;
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

238
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
239
 public:
D
dzhwinter 已提交
240
  explicit CUDADeviceContext(CUDAPlace place);
241
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
242

243
  /*! \brief  Wait for all operations completion in the stream. */
244
  void Wait() const override;
Q
QI JUN 已提交
245

246
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
247
  Place GetPlace() const override;
248

K
Kexin Zhao 已提交
249
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
250 251
  int GetComputeCapability() const;

252 253 254
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

255 256 257 258 259 260
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

261 262 263
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

264 265 266
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

267 268 269
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
270
    return context()->CublasCall(std::forward<Callback>(callback));
271 272 273 274 275 276 277 278 279
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
280 281
    return context()->TensorCoreCublasCallIfAvailable(
        std::forward<Callback>(callback));
282
  }
S
sneaxiy 已提交
283

284
  /*! \brief  Return cudnn  handle in the device context. */
285
  cudnnHandle_t cudnn_handle() const;
286

S
sneaxiy 已提交
287 288 289 290 291 292 293 294 295
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
296
  /*! \brief  Return cuda stream in the device context. */
297
  cudaStream_t stream() const;
Q
QI JUN 已提交
298

299
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
300 301 302 303 304
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
305
#endif
Q
qingqing01 已提交
306

Y
Yu Yang 已提交
307 308
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
309
    return context()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
310 311
  }

S
sneaxiy 已提交
312 313
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
314
    return context()->AddStreamCallback(callback);
S
sneaxiy 已提交
315 316
  }

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  void WaitStreamCallback() const { return context()->WaitStreamCallback(); }

  void ResetDefaultContext(const enum stream::Priority& priority) {
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

  void ResetThreadContext(const enum stream::Priority& priority) {
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  const std::unique_ptr<CUDAContext>& context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
334

Q
QI JUN 已提交
335
 private:
D
dzhwinter 已提交
336
  CUDAPlace place_;
337
  std::unique_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
338

339 340 341 342
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::unique_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
343 344 345

  mutable std::mutex cudnn_handle_mtx_;

346
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
347 348 349 350 351 352
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
353
#endif
Q
qingqing01 已提交
354

C
chengduo 已提交
355 356 357 358 359
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
360
  int max_threads_per_block_;
361
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
362

363
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
364
};
Q
qijun 已提交
365

366 367
class CudnnWorkspaceHandle {
 public:
368 369
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
370 371 372 373 374 375 376 377

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
378 379 380 381
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
382 383 384 385 386 387 388 389 390 391 392 393 394
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

395
  void ReallocWorkspace(size_t required_workspace_bytes);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
412
  std::mutex* mtx_;
413 414
};

Y
Yang Yu 已提交
415 416
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
417
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
418 419
};

C
chengduoZH 已提交
420
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
421 422 423 424 425 426
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
427

C
chengduoZH 已提交
428 429 430 431 432 433 434 435 436 437 438
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
439
#endif
Q
qijun 已提交
440

T
tensor-tang 已提交
441
#ifdef PADDLE_WITH_MKLDNN
442 443 444 445 446 447
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
448
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
449 450
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
451

452 453 454 455 456 457 458
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
459
void set_cur_input_shape_str(std::string input_shape_str);
460
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
461 462
void set_cur_paddle_data_layout(framework::DataLayout);
framework::DataLayout get_cur_paddle_data_layout(void);
S
Sylwester Fraczek 已提交
463

T
tensor-tang 已提交
464 465 466 467 468
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
469
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
470

471 472 473
  // Remove all entries from the blob map
  void ResetBlobMap() const;

474 475 476
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

477 478
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
479

480 481
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
482 483

 private:
484
  mkldnn::engine engine_;
485 486
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
487 488 489
};
#endif

D
dzhwinter 已提交
490 491 492 493 494
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
495
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
496 497 498 499 500
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
501
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
502 503 504 505 506 507
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

508 509
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
510
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
511
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
512

Y
Yang Yu 已提交
513 514 515 516 517 518 519
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

520 521
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
522 523
 private:
  static DeviceContextPool* pool;
524 525
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
526 527 528
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
529 530
}  // namespace platform
}  // namespace paddle