parallel_executor.cc 18.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
yuyang18 已提交
24
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
29
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
30
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
33
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
34
#endif
Y
Yu Yang 已提交
35
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
36 37
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
38
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
39
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
40

Y
Yang Yang 已提交
41
namespace paddle {
Y
Yu Yang 已提交
42 43
namespace framework {

Y
Yu Yang 已提交
44
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
static bool gProfileStarted = false;
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48 49 50
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
51
      : places_(places) {
Y
Yu Yang 已提交
52
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
53 54
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
56 57 58
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
59
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
60 61 62 63
#endif
      });
    }
  }
Y
Yu Yang 已提交
64

65 66 67 68 69 70 71 72 73 74 75
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
76

S
sneaxiy 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
91
      }
S
sneaxiy 已提交
92
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
93 94 95
    }
  }

D
dzhwinter 已提交
96
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
97 98
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
99
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
100
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
101

P
peizhilin 已提交
102
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
103
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
104
#endif
C
chengduoZH 已提交
105 106
  bool own_local_scope_;
  bool use_cuda_;
107
  bool use_all_reduce_;
108
  size_t nranks_;
S
sneaxiy 已提交
109

S
sneaxiy 已提交
110 111 112 113 114 115
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
116 117
};

S
sneaxiy 已提交
118 119 120 121 122 123 124
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
125
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
126
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
127 128
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
129 130
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
131
      } else {
S
sneaxiy 已提交
132 133
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
134 135
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
136
    } else {
S
sneaxiy 已提交
137
#endif
S
sneaxiy 已提交
138 139 140 141 142 143 144
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
145 146 147 148
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
149
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
150 151
  }

S
sneaxiy 已提交
152
  if (!gcs_.empty()) {
S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
174 175 176 177 178 179 180 181

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
182 183 184 185 186
  }

  return graph;
}

187 188 189 190
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
191
ParallelExecutor::ParallelExecutor(
192
    const std::vector<platform::Place> &places,
193 194
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
195
    Scope *scope, const std::vector<Scope *> &local_scopes,
196
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
197
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
198
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
199
  member_->global_scope_ = scope;
200
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
201
  member_->build_strategy_ = build_strategy;
202 203
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
204
  member_->nranks_ = num_trainers * places.size();
205 206 207 208 209

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
210 211
  }

212
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
213
  // Create local scopes
214
  if (local_scopes.empty()) {
C
chengduoZH 已提交
215
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
216 217
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
218
      member_->local_scopes_.emplace_back(&scope->NewScope());
219 220
    }
  } else {
C
chengduoZH 已提交
221
    member_->own_local_scope_ = false;
222 223
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
224
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
225
    }
Y
Yu Yang 已提交
226 227
  }

Y
Yancey1989 已提交
228 229 230 231 232 233 234 235 236
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);

  VLOG(1) << "Enable ParallelGraph Execution: "
          << build_strategy.enable_parallel_graph_;

C
chengduoZH 已提交
237
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
238
// Bcast Parameters to all GPUs
P
peizhilin 已提交
239
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
240 241 242
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
243
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
244
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
245
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
246
    }
247
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
248 249 250 251
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
252
      }
C
chengduoZH 已提交
253
    }
Y
Yancey1989 已提交
254

C
chengduoZH 已提交
255
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
Y
Yancey1989 已提交
256
        member_->places_, nccl_id, num_trainers, trainer_id));
C
chengduoZH 已提交
257 258
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
259
#endif
C
chengduoZH 已提交
260 261
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
262
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
263
  }
Y
Yancey1989 已提交
264
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
265

Y
Yancey1989 已提交
266 267 268
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<std::unique_ptr<ir::Graph>> graphs;
P
peizhilin 已提交
269
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
270
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
271
    for (size_t i = 0; i < member_->places_.size(); ++i) {
Y
Yancey1989 已提交
272 273
      std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
          main_program, {member_->places_[i]}, loss_var_name,
274 275
          {member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
          member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
276 277 278 279
      graphs.push_back(std::move(graph));
    }
  } else {
    std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
280
        main_program, member_->places_, loss_var_name, member_->local_scopes_,
281
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_.get());
Y
Yancey1989 已提交
282 283
    graphs.push_back(std::move(graph));
  }
C
chengduoZH 已提交
284
#else
Y
Yancey1989 已提交
285 286
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
      main_program, member_->places_, loss_var_name, member_->local_scopes_,
287
      member_->nranks_, member_->use_cuda_);
Y
Yancey1989 已提交
288
  graphs.push_back(std::move(graph));
Y
Yu Yang 已提交
289
#endif
Y
Yancey1989 已提交
290
  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
291 292 293 294 295
  if (max_memory_size >= 0) {
    for (size_t i = 0; i < graphs.size(); ++i) {
      graphs[i] = member_->PrepareGCAndRefCnts(
          std::move(graphs[i]), static_cast<size_t>(max_memory_size));
    }
Y
Yancey1989 已提交
296 297
  }

298 299
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
300 301 302 303 304 305 306 307 308 309 310
  std::vector<details::VariableInfo> var_infos;
  for (auto &graph : graphs) {
    for (auto &node : graph->Nodes()) {
      if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
        var_infos.emplace_back();
        var_infos.back().name_ = node->Var()->Name();
        var_infos.back().type_ = node->Var()->GetType();
        var_infos.back().persistable_ = node->Var()->Persistable();
      }
    }
  }
Y
Yancey1989 已提交
311

W
Wu Yi 已提交
312 313
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
314
    size_t graph_num = ir::GraphNum(*graphs[0]);
C
chengduo 已提交
315 316 317 318
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
319
          << ir::GraphNum(*graphs[0])
C
chengduo 已提交
320 321 322 323 324
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
325 326
  }

Y
Yancey1989 已提交
327
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
328
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
329 330
        exec_strategy, member_->local_scopes_, member_->places_,
        std::move(graphs)));
Y
yuyang18 已提交
331
  } else {
Y
Yancey1989 已提交
332 333 334 335 336 337 338 339 340
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
          std::move(graphs[0])));
    }
C
chengduoZH 已提交
341
  }
Y
yuyang18 已提交
342 343

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
344
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
345
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
346 347
}

Y
Yancey1989 已提交
348
void ParallelExecutor::BCastParamsToDevices(
349
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
350
  // the initializing bcast, all vars would be bcast from device(0).
351
  for (auto &var : vars) {
X
Xin Pan 已提交
352
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
353
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
354 355 356 357
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
358
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
359
      VLOG(3) << "one in var not inited, return!";
360 361
      continue;
    }
362 363
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
364
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
365
      std::vector<void *> buffers;
C
chengduo 已提交
366
      buffers.reserve(member_->places_.size());
367 368 369 370 371
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
372

X
Xin Pan 已提交
373
        if (i == 0) {
374 375
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
376
          auto local_scope = member_->local_scopes_[i];
377
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
378
          t->Resize(dims);
379
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
380
        }
381
        buffers.push_back(buffer);
382
      }
383

384 385 386 387 388 389
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
390 391
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
392
        }
393
        member_->nccl_ctxs_->WaitAll();
394
      }
C
chengduoZH 已提交
395 396 397
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
398 399
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
400
      for (size_t i = 1; i < member_->places_.size(); ++i) {
401 402
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
403 404 405 406

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
407 408 409 410 411 412
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
413
      }
Y
Stash  
Yu Yang 已提交
414 415
    }
  }
Y
Yu Yang 已提交
416
}
Y
Yu Yang 已提交
417

Y
Yu Yang 已提交
418 419
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
420 421 422
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
423 424
  }
#endif
Y
Yu Yang 已提交
425

X
Xin Pan 已提交
426
  platform::RecordBlock b(0);
S
sneaxiy 已提交
427 428
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
429
  }
S
sneaxiy 已提交
430 431 432
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
433
}
Y
Yu Yang 已提交
434

Y
Yu Yang 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
454 455 456 457 458
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
459 460
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
461
      auto t =
Y
Yu Yang 已提交
462
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
463 464
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
465 466 467 468
    }
  }
}

469 470 471
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
472
  if (!FLAGS_enable_parallel_graph) return false;
473

Y
Yancey1989 已提交
474
  bool enable_parallel_graph = true;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

  if (!member_->use_all_reduce_ || !member_->use_cuda_)
    enable_parallel_graph = false;

  if (build_strategy.enable_sequential_execution_ ||
      exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
    enable_parallel_graph = false;
Y
Yancey1989 已提交
496
  return enable_parallel_graph;
497 498
}

499
ParallelExecutor::~ParallelExecutor() {
500 501
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
502
  }
S
sneaxiy 已提交
503
  delete member_;
504 505
}

Y
Yu Yang 已提交
506
}  // namespace framework
Y
Yang Yang 已提交
507
}  // namespace paddle
S
sneaxiy 已提交
508

D
dzhwinter 已提交
509
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
510
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
511
USE_PASS(eager_deletion_pass);