framework.py 115.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
S
add doc  
sneaxiy 已提交
99 100 101 102 103 104 105 106
    '''
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
107
    gpu places would be returned.
S
add doc  
sneaxiy 已提交
108 109

    If :code:`device_ids` is not None, it should be the device
110 111
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
S
add doc  
sneaxiy 已提交
112
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
113 114

    Args:
S
add doc  
sneaxiy 已提交
115 116 117 118 119
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
    '''
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
S
add doc  
sneaxiy 已提交
134 135
    '''
    Create a list of :code:`fluid.CPUPlace` objects.
136

S
add doc  
sneaxiy 已提交
137
    If :code:`device_count` is None, the device count would
138
    be determined by environment variable :code:`CPU_NUM`.
S
add doc  
sneaxiy 已提交
139
    If :code:`CPU_NUM` is not set, the device count would
140
    be determined by :code:`multiprocessing.cpu_count()`.
S
add doc  
sneaxiy 已提交
141 142 143 144 145 146 147

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
    '''
S
sneaxiy 已提交
148 149 150 151 152 153
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
S
add doc  
sneaxiy 已提交
154 155 156 157
    '''
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
158
    be determined by environment variable :code:`CPU_NUM`.
S
add doc  
sneaxiy 已提交
159
    If :code:`CPU_NUM` is not set, the device count would
160
    be determined by :code:`multiprocessing.cpu_count()`.
S
add doc  
sneaxiy 已提交
161 162 163 164 165 166 167

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
    '''
S
sneaxiy 已提交
168 169 170 171 172 173 174
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
201
@signature_safe_contextmanager
202 203 204 205 206 207 208 209 210 211 212 213
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
214

215 216 217 218
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
219 220
          with name_scope("attention"):
             ...
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
240 241 242
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
243 244 245 246


def grad_var_name(var_name):
    """
247 248
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
249 250 251
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
252

253
def convert_np_dtype_to_dtype_(np_dtype):
254 255
    """
    Convert the data type in numpy to the data type in Paddle
256

257
    Args:
258
        np_dtype(np.dtype): the data type in numpy.
259

260 261
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
262 263

    """
264 265
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
266
        return core.VarDesc.VarType.FP32
267
    elif dtype == np.float64:
268
        return core.VarDesc.VarType.FP64
269
    elif dtype == np.float16:
270
        return core.VarDesc.VarType.FP16
271
    elif dtype == np.int32:
272
        return core.VarDesc.VarType.INT32
273
    elif dtype == np.int16:
274
        return core.VarDesc.VarType.INT16
275
    elif dtype == np.int64:
276
        return core.VarDesc.VarType.INT64
277
    elif dtype == np.bool:
278
        return core.VarDesc.VarType.BOOL
279 280
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
281 282
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
283 284
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
285
    else:
M
minqiyang 已提交
286
        raise ValueError("Not supported numpy dtype %s" % dtype)
287 288 289


def dtype_is_floating(dtype):
290 291 292
    """
    Check the data type is floating or not.
    Args:
293
        dtype(np.dtype|core.VarDesc.VarType): data type.
294 295 296 297 298
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
299
    if not isinstance(dtype, core.VarDesc.VarType):
300 301
        dtype = convert_np_dtype_to_dtype_(dtype)

302 303 304 305
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
306 307


Y
Yang Yang(Tony) 已提交
308
def _debug_string_(proto, throw_on_error=True):
309 310 311 312 313 314 315 316 317 318 319
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
320
    error_fields = list()
Y
Yang Yang(Tony) 已提交
321
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
322 323
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
324 325 326
    return proto.__str__()


X
Xin Pan 已提交
327
class Variable(object):
328
    """
329 330 331
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
332
    two variables in different blocks could have the same name.
333

334 335
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
336

337
    Most of a Variable's member variables can be setted to be None. It mean
338
    it is not available or will be specified later.
339 340

    Args:
341
        block(Block): The block that the variable belongs to.
342 343
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
344 345
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
346
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
347
            Some kinds of variable do not contain shape, just set it to None.
348 349 350
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
351
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
352
            series data.
353
            Default: None
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
376 377
    """

Y
Yu Yang 已提交
378 379
    def __init__(self,
                 block,
Y
Yu Yang 已提交
380
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
381 382 383 384
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
385
                 capacity=None,
Q
QI JUN 已提交
386
                 persistable=None,
F
fengjiayi 已提交
387
                 error_clip=None,
Y
Yu Yang 已提交
388
                 stop_gradient=False,
F
fengjiayi 已提交
389
                 is_data=False,
Y
Yu Yang 已提交
390
                 **kwargs):
Y
Yu Yang 已提交
391 392
        self.block = block
        if name is None:
Y
Yu Yang 已提交
393
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
394

Y
Yu Yang 已提交
395
        if dtype is not None:
396
            if not isinstance(dtype, core.VarDesc.VarType):
397
                dtype = convert_np_dtype_to_dtype_(dtype)
398

X
Xin Pan 已提交
399
        if _in_imperative_mode():
M
minqiyang 已提交
400
            # record vars in tracer rather than blocks
M
minqiyang 已提交
401 402
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
403 404 405
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
406 407
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
408
            if persistable:
409
                _imperative_tracer().trace_var(name, self)
M
minqiyang 已提交
410
        else:
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
483
            self.block.vars[name] = self
484 485 486
            self.op = None
            self.stop_gradient = stop_gradient
            self.is_data = is_data
Y
Yu Yang 已提交
487

488
    def _numpy(self):
M
minqiyang 已提交
489
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
490
        return np.array(new_ivar.value().get_tensor())
491 492

    def _backward(self):
X
Xin Pan 已提交
493
        self._ivar._run_backward()
494 495

    def _gradient(self):
M
minqiyang 已提交
496
        return np.array(self._ivar._grad_value())
497

X
Xin Pan 已提交
498 499
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
500

501
    def __str__(self):
Y
Yang Yang(Tony) 已提交
502 503
        return self.to_string(True)

F
update  
fengjiayi 已提交
504
    def to_string(self, throw_on_error, with_details=False):
505 506 507 508
        """
        Get debug string.

        Args:
509 510
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
511
            with_details(bool): more details about variables and parameters
512 513
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
514

515 516
        Returns:
            str: The debug string.
517
        """
518
        if _in_imperative_mode():
X
polish  
Xin Pan 已提交
519
            # TODO(panyx0718): add more imperative debug info.
520 521 522
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
523 524
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
525
        protostr = self.desc.serialize_to_string()
526
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
527 528 529 530
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
531 532
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
533
        return res_str
534 535 536

    __repr__ = __str__

W
Wu Yi 已提交
537
    def _set_desc(self, input):
538 539 540 541 542 543 544 545 546
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
547 548
        self.desc = input

549 550
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
551 552 553 554
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
555 556 557

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
558 559
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
560 561
        else:
            self.stop_gradient = s
562

563 564
    @property
    def persistable(self):
565 566 567 568
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            return self.desc.persistable()
569

Y
Yu Yang 已提交
570 571
    @persistable.setter
    def persistable(self, p):
572 573 574 575
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
576

Y
Yu Yang 已提交
577 578
    @property
    def name(self):
579 580 581 582
        if _in_imperative_mode():
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
583

T
typhoonzero 已提交
584 585
    @name.setter
    def name(self, new_name):
586 587 588 589
        if _in_imperative_mode():
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
590

Y
Yu Yang 已提交
591 592 593
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
594 595 596 597
        if _in_imperative_mode():
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
598 599

    @property
F
fengjiayi 已提交
600
    def dtype(self):
601 602 603 604
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
605 606 607

    @property
    def lod_level(self):
608
        # TODO(minqiyang): Support lod_level in imperative mode
609
        return self.desc.lod_level()
Y
Yu Yang 已提交
610

Y
Yu Yang 已提交
611 612
    @property
    def type(self):
613 614 615 616
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
617

W
Wu Yi 已提交
618
    def _set_error_clip(self, error_clip):
619 620 621 622 623 624 625 626 627
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
628 629
        self.error_clip = error_clip

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

    def _cloneVar(self, copy=False):
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
                stop_gradient=self._stop_gradient, )
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
        new_var = self._cloneVar()
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
        new_var = self._cloneVar()
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
            newitem = self._reconstructSliceinfo(item) or item
            check, info = self._detectContinuesSlice(newitem)
            if check:
                starts = info[0]
                ends = info[1]
                axes = [i for i in range(len(starts))]
                return self._sliceVar(axes, starts, ends)
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
807

F
fengjiayi 已提交
808 809 810
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
811

812 813
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
814 815 816 817
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
818
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
819 820 821 822 823
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
824 825 826 827
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
828 829 830 831 832 833 834 835 836
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
837
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
838 839 840 841 842 843
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
844 845 846 847 848 849 850 851
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
852 853
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
854 855
        return self.op_proto_map[type]

856 857 858 859
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
860
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
861 862
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
863 864
        }

F
fengjiayi 已提交
865

X
Xin Pan 已提交
866
class Operator(object):
867
    """
868 869 870 871 872 873 874
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
875
        type(str): The type of operator. Default None.
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
896
        Block.append_op or Block._prepend_op instead.
897 898 899 900 901 902 903 904 905 906

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
907
    """
908
    OP_WITHOUT_KERNEL_SET = {
909 910 911
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
912
    }
913

Y
Yu Yang 已提交
914 915
    def __init__(self,
                 block,
Y
Yu Yang 已提交
916
                 desc,
Y
Yu Yang 已提交
917 918 919
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
920
                 attrs=None):
X
Xin Pan 已提交
921
        if _in_imperative_mode():
922 923
            if type is None:
                raise ValueError(
924
                    "`type` to initialized an Operator can not be None.")
925
            self.iop = core.OpBase(type)
M
minqiyang 已提交
926

927 928
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
929
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
930
            if inputs is not None:
X
Xin Pan 已提交
931 932 933 934 935
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
936

X
Xin Pan 已提交
937
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
938
            if outputs is not None:
X
Xin Pan 已提交
939 940 941 942 943
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
                        if not _in_imperative_mode():
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1060
    def _has_kernel(self, op_type):
1061 1062
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1063
    def to_string(self, throw_on_error):
1064
        """
1065 1066
        Get debug string.

1067
        Args:
1068 1069
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1070

1071 1072
        Returns:
            str: The debug string.
1073 1074

        """
1075
        protostr = self.desc.serialize_to_string()
1076
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1077 1078 1079 1080
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1081 1082 1083

    __repr__ = __str__

F
fengjiayi 已提交
1084 1085
    @property
    def type(self):
1086 1087 1088 1089
        if _in_imperative_mode():
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1090 1091

    def input(self, name):
1092
        """
1093
        Get the input arguments according to the input parameter name.
1094

1095 1096
        Args:
            name(str): The input parameter name.
1097

1098 1099 1100
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1101
        """
F
fengjiayi 已提交
1102 1103
        return self.desc.input(name)

W
Wu Yi 已提交
1104
    def _rename_input(self, old_name, new_name):
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1115
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1116

W
Wu Yi 已提交
1117
    def _rename_output(self, old_name, new_name):
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1128
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1129

F
fengjiayi 已提交
1130 1131 1132 1133
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1134 1135 1136 1137 1138 1139 1140 1141
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1142
    def output(self, name):
1143
        """
1144
        Get output arguments by the output parameter name.
1145

1146 1147
        Args:
            name(str): The output parameter name.
1148

1149 1150 1151
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1152
        """
F
fengjiayi 已提交
1153 1154 1155 1156 1157 1158
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1159 1160 1161 1162 1163 1164 1165 1166
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1167
    def has_attr(self, name):
1168
        """
1169 1170
        Whether this Operator has the attribute with name or not.

1171
        Args:
1172
            name(str): the attribute name.
1173

1174 1175
        Returns:
            bool: True if has this attribute.
1176 1177

        """
F
fengjiayi 已提交
1178 1179 1180
        return self.desc.has_attr(name)

    def attr_type(self, name):
1181
        """
1182
        Get the type of attribute by attribute's name.
1183

1184 1185
        Args:
            name(str): the attribute name.
1186

1187 1188
        Returns:
            core.AttrType: the attribute type.
1189
        """
F
fengjiayi 已提交
1190 1191
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1192
    def _set_attr(self, name, val):
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1203 1204
        self._update_desc_attr(name, val)

1205 1206 1207
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1219 1220
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1221 1222
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1223
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1224 1225 1226 1227
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1228
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1229

F
fengjiayi 已提交
1230 1231 1232 1233 1234
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1235
        """
1236 1237
        Get the attribute by name.

1238
        Args:
1239
            name(str): the attribute name.
1240

1241 1242
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1243 1244
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1245
        return self.desc.attr(name)
Y
Yu Yang 已提交
1246

W
Wu Yi 已提交
1247
    def _block_attr_id(self, name):
1248
        """
G
gongweibao 已提交
1249
        Get the block attribute's id by name.
1250

1251 1252
        Args:
            name(str): the attribute name.
1253

1254 1255
        Returns:
            int: the block index.
1256
        """
W
Wu Yi 已提交
1257
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1258

W
Wu Yi 已提交
1259
    def _block_attr(self, name):
G
gongweibao 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1270
        id = self._block_attr_id(name)
G
gongweibao 已提交
1271 1272 1273
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1274
    def _blocks_attr(self, name):
G
gongweibao 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1285
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1286 1287 1288 1289 1290
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1291
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1302
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1303

J
JiayiFeng 已提交
1304
    def all_attrs(self):
F
fengjiayi 已提交
1305
        """
1306 1307 1308
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1309
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1310 1311 1312 1313
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1314 1315
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1316
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1317 1318 1319
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1320
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1321 1322 1323 1324
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1325 1326
        return attr_map

Y
Yu Yang 已提交
1327

Y
Yu Yang 已提交
1328
class Block(object):
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1343
        use `Program._create_block()` to create a block.
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1358
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1359
        self.desc = program.desc.block(idx)
1360
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1361
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1362
        self.program = program
1363
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1364

1365
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1366 1367
        return self.to_string(True)

F
fengjiayi 已提交
1368 1369
    def to_string(self, throw_on_error, with_details=False):
        """
1370 1371
        Get debug string.

F
fengjiayi 已提交
1372 1373
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1374
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1375
            with_details(bool): more details about variables and parameters
1376 1377
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1378

1379 1380
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1381 1382 1383 1384
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1385
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1386 1387
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1388
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1389
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1390
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1391
            for op in self.ops:
F
fengjiayi 已提交
1392 1393
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1394 1395 1396
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1397 1398
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1399 1400
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1401 1402 1403

    __repr__ = __str__

Y
Yu Yang 已提交
1404 1405
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1406
        return self.desc.parent
Y
Yu Yang 已提交
1407

Y
Yu Yang 已提交
1408 1409 1410 1411
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1412
    def _set_forward_block_idx(self, idx):
1413 1414 1415 1416 1417 1418 1419 1420 1421
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1422
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1423

Y
Yu Yang 已提交
1424 1425
    @property
    def idx(self):
Y
Yu Yang 已提交
1426
        return self.desc.id
Y
Yu Yang 已提交
1427

Q
Qiao Longfei 已提交
1428
    def var(self, name):
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1442
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1443 1444 1445
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1446 1447
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1448
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1449
        return v
Q
Qiao Longfei 已提交
1450

X
Xin Pan 已提交
1451
    def _find_var_recursive(self, name):
1452 1453 1454 1455 1456 1457 1458
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1459
            Variable: the Variable with the giving name. Or None if not found.
1460
        """
Y
Yu Yang 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1485
        return None
Y
Yu Yang 已提交
1486

X
Xin Pan 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1506

Q
Qiao Longfei 已提交
1507
    def all_parameters(self):
1508
        return list(self.iter_parameters())
1509

1510
    def iter_parameters(self):
M
minqiyang 已提交
1511
        return (item[1] for item in six.iteritems(self.vars)
1512
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1513

Y
Yu Yang 已提交
1514
    def create_var(self, *args, **kwargs):
1515
        var = Variable(block=self, *args, **kwargs)
1516 1517
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1518
        return var
Y
Yu Yang 已提交
1519

Q
Qiao Longfei 已提交
1520 1521 1522
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1523
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1524 1525
        """
        Rename variable in vars and ops' inputs and outputs
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1538
        """
M
minqiyang 已提交
1539 1540
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1541

T
typhoonzero 已提交
1542
        if not self.has_var(name):
1543
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1544 1545
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1546
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1547 1548 1549 1550 1551 1552 1553
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1554
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1555 1556 1557 1558
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1559
        orig_var_type = v.type
M
minqiyang 已提交
1560
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1561
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1562
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1563
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1564 1565 1566 1567
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1568
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1569 1570 1571 1572 1573 1574 1575
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1576
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1577 1578
            var = Variable(
                self,
T
typhoonzero 已提交
1579
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1580 1581 1582 1583
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1584
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1585 1586 1587
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1588
        self._sync_with_cpp()
1589
        return var
T
typhoonzero 已提交
1590

W
Wu Yi 已提交
1591 1592
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1593
        self.desc._remove_var(cpt.to_bytes(name))
1594 1595
        del self.vars[name]

Y
Yu Yang 已提交
1596 1597
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1598
        param = Parameter(global_block, *args, **kwargs)
1599
        if 'initializer' in kwargs:
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1620
        return param
Y
Yu Yang 已提交
1621

Y
Yu Yang 已提交
1622
    def append_op(self, *args, **kwargs):
1623 1624 1625 1626 1627 1628
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
M
minqiyang 已提交
1629
        if _in_imperative_mode():
1630 1631 1632 1633 1634 1635 1636 1637
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1638 1639 1640 1641
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1642 1643 1644
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1645 1646 1647 1648 1649 1650 1651 1652 1653
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1654
            self.ops.append(op)
M
minqiyang 已提交
1655

1656 1657
        return op

W
Wu Yi 已提交
1658
    def _insert_op(self, index, *args, **kwargs):
1659 1660 1661 1662 1663 1664 1665 1666 1667
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1668 1669
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1670 1671 1672 1673
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1674
    def _remove_op(self, index):
1675 1676 1677 1678 1679 1680 1681 1682 1683
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1684 1685
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1686 1687
        del self.ops[index]

W
Wu Yi 已提交
1688
    def _slice_ops(self, start, end):
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1699
        return self.ops[start:end]
Y
Yancey1989 已提交
1700

W
Wu Yi 已提交
1701
    def _prepend_op(self, *args, **kwargs):
M
minqiyang 已提交
1702
        if _in_imperative_mode():
1703 1704 1705 1706 1707 1708 1709
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1710 1711 1712
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1713 1714 1715 1716 1717 1718 1719 1720
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1721
            self.ops.insert(0, op)
1722

Y
Yu Yang 已提交
1723 1724
        return op

W
Wu Yi 已提交
1725
    def _sync_with_cpp(self):
1726
        """
1727 1728
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1729
        """
Q
Qiao Longfei 已提交
1730 1731 1732 1733 1734
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1735
        # sync variables removed from c++ end
1736
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1737
            if not self.desc.find_var(cpt.to_bytes(var)):
1738 1739
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1740
        # sync operators from cpp
1741 1742 1743 1744
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1761 1762 1763 1764 1765

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1766
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1767 1768 1769 1770 1771 1772 1773

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1787 1788 1789 1790
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1791
    def _copy_param_info_from(self, other):
1792
        """
1793 1794
        Copy the information of parameters from the other block.

1795
        Args:
1796 1797 1798 1799 1800
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1801 1802 1803 1804 1805

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1806 1807
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1808
        for p in other.iter_parameters():
1809 1810 1811
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1812
                raise ValueError("_copy_param_info_from should be invoked with "
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1825
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1826
                error_clip=p.error_clip,
1827 1828 1829
                name=v.name)
            self.vars[new_p.name] = new_p

1830
    def _clone_variable(self, var, force_persistable=True):
1831 1832
        """
        Clone a variable into current block.
1833

1834 1835
        Args:
            var: the variable to be cloned.
1836 1837 1838
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1839 1840

        Returns:
1841
            Variable: the new  variable cloned from 'var' in current block.
1842 1843
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1844 1845 1846 1847 1848
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1849 1850
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1851
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1852 1853 1854 1855 1856 1857
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1858
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1859
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1860 1861 1862 1863 1864 1865 1866
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1867
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1868
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1869
        return ret_var
1870

Y
Yu Yang 已提交
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1967
    def remove_input_by_id(self, node_id):
1968 1969 1970 1971 1972 1973
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1974
        self.node.remove_input(node_id)
1975

1976
    def remove_input(self, node):
1977 1978 1979 1980
        """
        Remove a node from inputs.

        Args:
1981
            node(IrNode): the node being removed.
1982
        """
1983
        self.node.remove_input(node.node)
1984

1985
    def append_input(self, node):
1986 1987 1988 1989
        """
        Append a node in inputs.

        Args:
1990
            node(IrNode): the node being appended.
1991
        """
1992
        self.node.append_input(node.node)
1993 1994 1995 1996 1997 1998 1999 2000

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2001
    def remove_output_by_id(self, node_id):
2002 2003 2004 2005 2006 2007
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2008
        self.node.remove_output(node_id)
2009

2010
    def remove_output(self, node):
2011 2012 2013 2014
        """
        Remove a node from outputs.

        Args:
2015
            node(IrNode): the node being removed.
2016
        """
2017
        self.node.remove_output(node.node)
2018

2019
    def append_output(self, node):
2020 2021 2022 2023
        """
        Append a node in outputs.

        Args:
2024
            node(IrNode): the node being appended.
2025
        """
2026
        self.node.append_output(node.node)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2281 2282
class IrGraph(object):
    """
2283
    Python IrGraph. Beneath it is a core.Graph, which is used for
2284
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2285 2286
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2287 2288 2289 2290
    """

    def __init__(self, graph, for_test=False):
        """
2291 2292
        Construct an IrGraph using core.Graph.

2293 2294 2295 2296 2297 2298 2299 2300 2301
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2302 2303 2304 2305
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2306 2307 2308
        Warns:
            The method only clones the graph structure, not its attributes.

2309 2310 2311
        Returns:
            IrGraph: A new and duplicated graph.
        """
2312
        g = self.graph.clone()
2313 2314
        return IrGraph(g, self._for_test)

2315
    def is_test(self):
2316 2317 2318
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2319 2320
        return self._for_test

W
WangZhen 已提交
2321
    def all_nodes(self):
2322 2323 2324
        """
        Return all nodes included in the graph as a set.
        """
2325
        return {IrNode(node) for node in self.graph.nodes()}
2326

2327
    def all_var_nodes(self):
2328 2329 2330
        """
        Return all variable nodes included in the graph as a set.
        """
2331
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2332

2333
    def all_persistable_nodes(self):
2334 2335 2336
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2337 2338 2339 2340 2341
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2342
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2343

2344
    def all_op_nodes(self):
2345 2346 2347
        """
        Return all operator nodes included in the graph as a set.
        """
2348
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2349

2350
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2362
            IrVarNode: the created persistable variable node.
2363
        """
2364 2365 2366 2367 2368
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2369
        return IrVarNode(self.graph.create_var_node(var_desc))
2370 2371

    def create_var_node(self, name, var_type, shape, var_dtype):
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2383
            IrVarNode: the created variable node.
2384 2385
        """

2386 2387 2388 2389
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2390
        return IrVarNode(self.graph.create_var_node(var_desc))
2391 2392

    def create_var_node_from_desc(self, var_desc):
2393 2394 2395 2396 2397 2398 2399 2400
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2401
            IrVarNode: the created variable node.
2402
        """
2403
        return IrVarNode(self.graph.create_var_node(var_desc))
2404 2405

    def create_op_node(self, op_type, attrs, inputs, outputs):
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2416
            IrOpNode: the created operator node.
2417
        """
2418 2419
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2420
        for attr, value in six.iteritems(attrs):
2421
            self._update_desc_attr(op_desc, attr, value)
2422
        for input_name, var_nodes in six.iteritems(inputs):
2423 2424 2425 2426
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2427
        for output_name, var_nodes in six.iteritems(outputs):
2428 2429 2430 2431
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2432
        return IrOpNode(self.graph.create_op_node(op_desc))
2433 2434

    def create_op_node_from_desc(self, op_desc):
2435 2436 2437 2438 2439 2440 2441
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2442
            IrOpNode: the created operator node.
2443
        """
2444
        return IrOpNode(self.graph.create_op_node(op_desc))
2445 2446

    def update_input_link(self, old_input_node, new_input_node, op_node):
2447 2448 2449 2450
        """
        Update the input's link of a operator node.

        Args:
2451 2452 2453
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2454
        """
2455 2456
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2457
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2458 2459 2460 2461
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2462
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2463 2464

    def link_to(self, node_in, node_out):
2465 2466 2467 2468
        """
        Connect two nodes.

        Args:
2469 2470
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2471
        """
2472
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2473
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2474 2475
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2476 2477

    def safe_remove_nodes(self, remove_nodes):
2478 2479 2480 2481 2482 2483 2484
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2485
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2486 2487 2488 2489
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2490 2491
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2492

Z
Zhen Wang 已提交
2493 2494 2495 2496 2497 2498 2499 2500
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2501
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2502 2503 2504 2505
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2506
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2507 2508 2509
                        ]
                    else:
                        var_nodes[each_var_name].append(
2510 2511
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2512 2513
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2514
    def has_circle(self):
2515 2516 2517 2518 2519 2520
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2521 2522 2523
        return core.has_circle(self.graph)

    def graph_num(self):
2524 2525 2526 2527 2528 2529
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2530 2531 2532
        return core.graph_num(self.graph)

    def topology_sort(self):
2533 2534 2535 2536 2537 2538
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2539
            list(IrNode): nodes in topology order.
2540
        """
2541
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2542
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2543 2544

    def build_adjacency_list(self):
2545 2546 2547 2548
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2549
            dict{IrNode: set(IrNode)}: the adjacency list.
2550
        """
2551 2552 2553 2554 2555
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2556

2557 2558 2559 2560 2561 2562 2563 2564
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2565
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2566 2567 2568 2569 2570
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2571 2572 2573 2574 2575 2576 2577 2578 2579
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2580
        remove_ctr_vars = set()
2581
        if remove_ctr_var:
2582
            for node in self.all_var_nodes():
2583 2584 2585
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2586 2587
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2588 2589
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2590 2591 2592 2593 2594 2595
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2607 2608 2609
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2610
        WARN: When the graph includes backward operator nodes, the
2611 2612 2613 2614 2615 2616
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2617
        convert_pass = core.get_pass('graph_to_program_pass')
2618 2619
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2620 2621 2622 2623
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2651
class Program(object):
D
dzhwinter 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2663
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2664 2665

    Returns:
Y
yuyang18 已提交
2666
        A empty program.
D
dzhwinter 已提交
2667 2668

    Examples:
Y
yuyang18 已提交
2669 2670 2671 2672 2673 2674
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2675 2676 2677

    """

2678 2679
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2680 2681
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2682
        self._seed = 0
Y
yuyang18 已提交
2683
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2684
        self._op_role_var = []
T
tangwei12 已提交
2685

2686 2687
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2688
        self._is_distributed = False
2689
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2690
        self._is_chief = False
2691 2692 2693
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2694
        self._endpoints = []
2695 2696 2697
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2698
        self._trainers_endpoints = []
2699
        # the distributed lookup table names
T
tangwei12 已提交
2700
        self._distributed_lookup_table = None
2701 2702 2703 2704

        # use Deep gradient comrepssion or not
        self._enable_dgc = False

D
dzhwinter 已提交
2705
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2706
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2707
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2708 2709

    @property
D
dzhwinter 已提交
2710
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2711 2712
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2713
        return self.__is_mem_optimized
D
dzhwinter 已提交
2714

D
dzhwinter 已提交
2715 2716 2717
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2718 2719 2720

    @property
    def op_role(self):
Y
yuyang18 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2734 2735 2736
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2737
    def op_role(self, role):
Y
yuyang18 已提交
2738 2739 2740 2741
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2742 2743 2744 2745 2746 2747 2748
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2749 2750 2751 2752
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2753
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2764
    @signature_safe_contextmanager
W
Wu Yi 已提交
2765
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2766 2767 2768 2769 2770 2771 2772
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2773
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2774 2775 2776 2777

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2778
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2779 2780
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2781 2782 2783
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2784 2785
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2786 2787 2788 2789
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2790
        yield
X
Xin Pan 已提交
2791 2792
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2793

S
rename  
sneaxiy 已提交
2794
    @signature_safe_contextmanager
X
Xin Pan 已提交
2795
    def _lr_schedule_guard(self, is_with_opt=False):
2796 2797 2798 2799 2800 2801 2802
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2803 2804 2805 2806
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2807 2808 2809 2810 2811 2812 2813

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2814 2815 2816 2817

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2818 2819
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2820 2821
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2822 2823 2824
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2825 2826
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2827

2828
    def __str__(self):
Y
yuyang18 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2838 2839
        return self.to_string(True)

F
fengjiayi 已提交
2840 2841 2842
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2843

F
fengjiayi 已提交
2844
        Args:
Y
yuyang18 已提交
2845 2846
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2847

Y
yuyang18 已提交
2848 2849 2850 2851
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2852 2853
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2854 2855 2856 2857

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2868 2869
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2870 2871
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2872

W
Wu Yi 已提交
2873
    def _get_desc(self):
Y
yuyang18 已提交
2874 2875 2876 2877 2878 2879 2880
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2881 2882
        return self.desc

X
version  
Xin Pan 已提交
2883 2884 2885
    def _version(self):
        return self.desc._version()

2886
    def clone(self, for_test=False):
Y
yuyang18 已提交
2887 2888 2889
        """
        Create a new, duplicated program.

2890

Y
yuyang18 已提交
2891 2892 2893 2894
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2895

Y
yuyang18 已提交
2896 2897 2898 2899
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2900 2901 2902 2903 2904
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2905 2906

        Args:
Y
yuyang18 已提交
2907 2908
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2909

D
dzhwinter 已提交
2910
        Returns:
Y
yuyang18 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2964 2965
        """
        if for_test:
X
Xin Pan 已提交
2966
            p = self._inference_optimize(prune_read_op=False)
2967
        else:
2968
            p = Program()
G
gongweibao 已提交
2969 2970
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2971
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2972 2973 2974
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2975 2976 2977 2978

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2979
            p._sync_with_cpp()
2980

W
Wu Yi 已提交
2981
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2982
        p._copy_data_info_from(self)
2983
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2984
        return p
2985

W
Wu Yi 已提交
2986
    def _prune(self, targets):
Y
yuyang18 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3002 3003 3004 3005 3006 3007
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3008 3009
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3010
                    # and we need to find the current op that generate this
3011 3012 3013 3014 3015 3016 3017 3018
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3019
                    t = t.op
3020 3021 3022 3023
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3024
                else:
3025 3026
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3027 3028 3029 3030

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3031 3032 3033
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3034
        res._sync_with_cpp()
3035 3036
        return res

X
Xin Pan 已提交
3037
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3038
        """
F
fengjiayi 已提交
3039 3040 3041 3042 3043
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3044
        3. change the :code:`is_test`
Y
yuyang18 已提交
3045 3046 3047
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3048
        Args:
X
Xin Pan 已提交
3049 3050
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3051

Y
yuyang18 已提交
3052 3053 3054 3055 3056 3057
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3058
        res = Program()
3059
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3060 3061 3062 3063

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3064
        if prune_read_op:
3065 3066 3067 3068 3069 3070 3071 3072 3073
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3074
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3075 3076

        # change all `is_test` attributes to True
M
minqiyang 已提交
3077
        for i in six.moves.range(res.desc.num_blocks()):
3078
            block = res.desc.block(i)
M
minqiyang 已提交
3079
            for j in six.moves.range(block.op_size()):
3080 3081
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3082
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3083 3084 3085
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3086
        res._sync_with_cpp()
3087 3088
        return res

3089 3090
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3091 3092 3093 3094 3095 3096 3097
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3098
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3099 3100 3101 3102

        Returns:
            Program: A deserialized program desc.
        """
3103 3104
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3105
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3106
        p._sync_with_cpp()
3107
        return p
Y
Yu Yang 已提交
3108

3109
    @staticmethod
3110
    def _construct_from_desc(desc):
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3126 3127
    @property
    def random_seed(self):
Y
yuyang18 已提交
3128 3129 3130 3131 3132 3133
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
3134 3135
        return self._seed

Q
qiaolongfei 已提交
3136 3137
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3138 3139 3140
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
3141 3142
        return self.desc.num_blocks()

D
dzhwinter 已提交
3143 3144 3145 3146 3147 3148
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3149
    def __repr__(self):
3150
        return self.__str__()
3151

Y
Yu Yang 已提交
3152
    def global_block(self):
Y
yuyang18 已提交
3153 3154 3155
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
3156 3157
        return self.blocks[0]

Q
Qiao Longfei 已提交
3158
    def block(self, index):
Y
yuyang18 已提交
3159 3160 3161 3162 3163 3164 3165 3166
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
3167 3168
        return self.blocks[index]

Y
Yu Yang 已提交
3169
    def current_block(self):
Y
yuyang18 已提交
3170 3171 3172 3173
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
3174 3175
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3176
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3187
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3188 3189 3190
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3191 3192 3193 3194
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3195
    def _rollback(self):
Y
yuyang18 已提交
3196 3197 3198 3199 3200
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3201 3202
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3203
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3214 3215 3216
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3217
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3218

W
Wu Yi 已提交
3219
    def _copy_param_info_from(self, other):
3220
        """
3221
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3222

Y
yuyang18 已提交
3223 3224 3225
        Notes: This is a very low level API. Users should not invoke it
        directly.

3226 3227 3228 3229 3230 3231 3232
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3233
            raise TypeError("_copy_param_info_from should be invoked with "
3234 3235 3236
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3237
            raise ValueError("_copy_param_info_from should be invoked with two "
3238
                             "program, with represent the same topology")
W
Wu Yi 已提交
3239
        self.global_block()._copy_param_info_from(other.global_block())
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3256
        self._parameters_on_pservers = other._parameters_on_pservers
3257
        self._endpoints = other._endpoints
3258
        self._ps_endpoint = other._ps_endpoint
3259 3260
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3261
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3262 3263
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3264

Y
yuyang18 已提交
3265 3266 3267
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3268 3269 3270 3271 3272 3273 3274
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3275
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3276 3277 3278
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3279
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3280
                             "program, with represent the same topology")
3281
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3282 3283 3284
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3285
    def list_vars(self):
Y
yuyang18 已提交
3286 3287 3288 3289 3290 3291
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
3292
        for each_block in self.blocks:
3293
            for each_var in list(each_block.vars.values()):
3294 3295
                yield each_var

Y
Yu Yang 已提交
3296

Y
Yu Yang 已提交
3297
class Parameter(Variable):
3298
    """
3299
    Parameter is derived from Variable. A parameter is a persistable
3300
    Variable, and will be updated by optimizers after each iteration.
3301
    The training of a neural network is essentially the updating of
3302 3303
    its parameters.

3304
    Relative to a general Variable, a Parameter has several its own
3305 3306
    member variables:

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3319 3320
    """

Y
Yu Yang 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3331 3332 3333

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3334 3335 3336 3337
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3338 3339
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3340
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3341

W
wanghaoshuang 已提交
3342
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3343

F
fengjiayi 已提交
3344 3345 3346
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3347 3348 3349
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3350

F
update  
fengjiayi 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3365
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3366
            for attr_name in additional_attr:
3367 3368
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3369 3370
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3371 3372 3373 3374
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3375

Y
Yu Yang 已提交
3376
# program is a global instance.
Y
Yu Yang 已提交
3377 3378
_main_program_ = Program()
_startup_program_ = Program()
3379

3380

3381
def default_startup_program():
Y
Yu Yang 已提交
3382
    """
Y
yuyang18 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3392

Y
Yu Yang 已提交
3393 3394 3395
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3396
    return _startup_program_
3397

3398

3399
def default_main_program():
Y
Yu Yang 已提交
3400
    """
Y
yuyang18 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3410

Y
Yu Yang 已提交
3411 3412 3413
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3414
    return _main_program_
Y
Yu Yang 已提交
3415 3416 3417 3418 3419


def switch_main_program(program):
    """
    Switch the main program to a new program.
3420

Y
Yu Yang 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3435
    Switch the startup program to a new program
Y
Yu Yang 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3448
@signature_safe_contextmanager
Y
Yu Yang 已提交
3449 3450
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3451 3452 3453
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3454

Y
Yu Yang 已提交
3455
    Examples:
Y
yuyang18 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3466

Y
Yu Yang 已提交
3467
    Examples:
Y
yuyang18 已提交
3468 3469 3470 3471 3472 3473

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3474

Y
Yu Yang 已提交
3475
    Args:
Y
yuyang18 已提交
3476
        main_program(Program): New main program inside `with` statement.
3477
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3491 3492


W
Wu Yi 已提交
3493
def _get_var(name, program=None):
X
xuwei06 已提交
3494
    """
Y
yuyang18 已提交
3495
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3496

X
xuwei06 已提交
3497 3498 3499
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3500
        If None, default_global_program() will be used.
X
xuwei06 已提交
3501 3502 3503 3504 3505 3506 3507

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3508
    assert isinstance(program, Program)
X
xuwei06 已提交
3509 3510

    return program.global_block().var(name)
3511 3512


S
rename  
sneaxiy 已提交
3513
@signature_safe_contextmanager
3514 3515 3516 3517
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3518

3519
    yield
P
Paddle CI 已提交
3520

3521
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3522 3523


S
rename  
sneaxiy 已提交
3524
@signature_safe_contextmanager
P
Paddle CI 已提交
3525
def _imperative_place_guard(place):
M
minqiyang 已提交
3526 3527 3528
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3529

3530
    yield
M
minqiyang 已提交
3531

M
minqiyang 已提交
3532
    _imperative_current_expected_place_ = tmp_place