recurrent_op.cc 26.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16 17 18
#include "paddle/fluid/operators/recurrent_op.h"

#include <algorithm>
#include "paddle/fluid/string/string_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
23 24
using StepScopeVar = std::vector<framework::Scope *>;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
const char RecurrentBase::kInputs[] = "inputs";
const char RecurrentBase::kInitialStates[] = "initial_states";
const char RecurrentBase::kParameters[] = "parameters";
const char RecurrentBase::kOutputs[] = "outputs";
const char RecurrentBase::kStepScopes[] = "step_scopes";
const char RecurrentBase::kHasStates[] = "has_states";
const char RecurrentBase::kExStates[] = "ex_states";
const char RecurrentBase::kStates[] = "states";
const char RecurrentBase::kStepBlock[] = "sub_block";
const char RecurrentBase::kReverse[] = "reverse";
const char RecurrentBase::kIsTrain[] = "is_train";
const char RecurrentBase::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";
#define GRAD_SUFFIX "@GRAD"
const char RecurrentBase::kInputGrads[] = "inputs" GRAD_SUFFIX;
const char RecurrentBase::kOutputGrads[] = "outputs" GRAD_SUFFIX;
const char RecurrentBase::kParamGrads[] = "parameters" GRAD_SUFFIX;
const char RecurrentBase::kInitStateGrads[] = "initial_states" GRAD_SUFFIX;

43 44 45 46 47 48 49 50 51 52 53 54 55 56
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
    parent_scope->DeleteScope(sub_scope);
  }

  step_scopes->clear();
}

57 58 59 60 61 62 63 64
StepScopes::StepScopes(const platform::DeviceContext &dev_ctx,
                       const framework::Scope &parent, StepScopeVar *scopes,
                       bool is_train, size_t seq_len, bool is_backward)
    : counter_(is_backward ? seq_len - 1 : 0UL),
      scopes_(scopes),
      is_train_(is_train),
      is_backward_(is_backward) {
  size_t num_step_scopes = is_train ? seq_len : 2;
65 66
  PADDLE_ENFORCE_EQ(is_train || !is_backward, true,
                    "Cannot backward when is not training");
67 68 69 70 71
  if (!is_backward_) {
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
    scopes->reserve(static_cast<size_t>(num_step_scopes));
    for (size_t i = 0; i < num_step_scopes; ++i) {
      scopes->emplace_back(&parent.NewScope());
Y
Yan Chunwei 已提交
72
    }
Y
Yu Yang 已提交
73
  }
74 75 76
}

framework::Scope &StepScopes::CurScope() { return GetScope(counter_); }
Y
Yu Yang 已提交
77

78 79 80 81
framework::Scope &StepScopes::ExScope() {
  auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
  return scope;
}
Y
Yu Yang 已提交
82

83 84 85 86 87 88 89 90
void StepScopes::BackwardNext(const platform::DeviceContext &dev_ctx,
                              framework::Scope *parent_scope) {
  PADDLE_ENFORCE_EQ(is_backward_, true,
                    "Cannot get backward next scope when is forward");
  if (counter_ + 2 == scopes_->size()) {
    parent_scope->DeleteScope((*scopes_)[counter_ + 1]);
    scopes_->pop_back();
    VLOG(3) << "Deleted scope at " << counter_ + 1;
Y
Yu Yang 已提交
91
  }
92 93 94 95 96 97 98
  --counter_;
}

void StepScopes::ForwardNext() {
  PADDLE_ENFORCE_EQ(is_backward_, false,
                    "Cannot get forward next scope when is backward");
  ++counter_;
99
}
Y
Yu Yang 已提交
100

101 102 103
framework::Scope &StepScopes::GetScope(size_t scope_id) const {
  if (!is_train_) {
    scope_id %= 2;
Y
Yu Yang 已提交
104
  }
105 106 107
  PADDLE_ENFORCE_LT(scope_id, scopes_->size());
  return *(*scopes_)[scope_id];
}
Y
Yu Yang 已提交
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
RecurrentBase::RecurrentBase(const std::string &type,
                             const framework::VariableNameMap &inputs,
                             const framework::VariableNameMap &outputs,
                             const framework::AttributeMap &attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

// Get SequenceLength from Scope
//   The sequence length is got from input tensor. The input tensor's
//   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
//   is SEQ_LEN. The second of the tensor's shape could be the batch size or
//   nested sequence length.
int64_t RecurrentBase::GetSequenceLength(const framework::Scope &scope) const {
  // Dim format SEQ_LEN, BATCH_SIZE, ...
  int64_t seq_len = -1;
  auto &all_inputs = Inputs(kInputs);
124
  PADDLE_ENFORCE_EQ(all_inputs.empty(), false);
125 126
  for (auto &iname : all_inputs) {
    auto *var = scope.FindVar(iname);
127 128
    PADDLE_ENFORCE_NOT_NULL(var);
    PADDLE_ENFORCE_EQ(var->IsType<framework::LoDTensor>(), true);
129 130 131 132 133
    auto &dim = var->Get<framework::LoDTensor>().dims();
    if (seq_len == -1) {
      seq_len = dim[0];
    } else {
      PADDLE_ENFORCE_EQ(seq_len, dim[0]);
Y
Yu Yang 已提交
134 135
    }
  }
136 137
  return seq_len;
}
Y
Yu Yang 已提交
138

139 140 141 142 143 144 145 146 147 148 149 150 151
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
//                                   map(dst_scope.Var, dst_vars)):
//   dst_tensor.ShareDataWith(src_tensor)
void RecurrentBase::LinkTensor(const framework::Scope &src_scope,
                               const std::vector<std::string> &src_vars,
                               framework::Scope *dst_scope,
                               const std::vector<std::string> &dst_vars) {
  LinkTensorWithCallback(
      src_scope, src_vars, dst_scope, dst_vars,
      [&](const framework::Tensor &src, framework::Tensor *dst) {
        dst->ShareDataWith(src);
      });
}
Y
Yu Yang 已提交
152

153 154 155 156 157 158 159
// (seq_len, shape) -> return [seq_len] + list(shape)
framework::DDim RecurrentBase::PrependDims(size_t seq_len,
                                           const framework::DDim &src) {
  auto dims = framework::vectorize(src);
  dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
  return framework::make_ddim(dims);
}
Y
Yu Yang 已提交
160

161 162 163 164 165
RecurrentOp::RecurrentOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
166

167 168 169 170
void RecurrentOp::RunImpl(const framework::Scope &scope,
                          const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
Y
Yu Yang 已提交
171

172 173 174
  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);
Y
Yu Yang 已提交
175

176 177 178
  VLOG(3) << "Static RNN input sequence length = " << seq_len;
  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);
Y
Yu Yang 已提交
179

180 181
  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
182

183 184 185 186
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);
Y
Yu Yang 已提交
187

188 189 190
  for (size_t i = 0; i < seq_len; ++i) {
    size_t seq_offset = reverse ? seq_len - i - 1 : i;
    VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
191

192
    auto &cur_scope = scopes.CurScope();
Y
Yu Yang 已提交
193

194 195 196 197 198 199 200 201 202 203 204
    // Link outside::input --> inside::input
    //   inside::input = outside::input[seq_offset: seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
        [&seq_offset](const framework::Tensor &outside,
                      framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        });
Y
Yu Yang 已提交
205

206 207 208 209 210 211 212 213 214 215 216
    if (has_state) {
      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }
Y
Yu Yang 已提交
217 218
    }

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (i > 0) {
      LinkTensorWithCallback(scope, Outputs(kOutputs), cur_scope,
                             Outputs(kOutputs),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             });
    }

    // Linked now, execute!
234 235
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
236 237 238 239 240 241 242
                                false /*create_vars*/, true /* keep_kids */);
    if (i == 0) {
      LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            // create output tensor at begin
243 244 245
            dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
            dst_tensor->mutable_data(place, src_tensor.type());

246 247 248 249 250 251
            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
          });
    }
252

253
    scopes.ForwardNext();
Y
Yu Yang 已提交
254
  }
255
}
Y
Yu Yang 已提交
256

257 258 259 260
StepScopes RecurrentOp::CreateStepScopes(const platform::DeviceContext &dev_ctx,
                                         const framework::Scope &scope,
                                         size_t seq_len) const {
  auto *var = scope.FindVar(Output(kStepScopes));
261
  PADDLE_ENFORCE_NOT_NULL(var);
262 263 264
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len);
}
Y
Yu Yang 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
RecurrentGradOp::RecurrentGradOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}

void RecurrentGradOp::RunImpl(const framework::Scope &scope,
                              const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));

  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);

  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);

  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);

  for (size_t step_id = 0; step_id < seq_len; ++step_id) {
    size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
    VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
    auto &cur_scope = scopes.CurScope();

    // Link outside::output_grads --> inside::output_grads
    //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
        [&](const framework::Tensor &outside, framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        },
        true /*is_backward*/);
    auto og_set = List2Set(Inputs(kOutputGrads));

    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      std::copy(og_set.begin(), og_set.end(),
                std::ostream_iterator<std::string>(sout, ","));
      VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
    }

    if (has_state) {
      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
333
          auto &ex_grad_tensor =
334 335 336 337
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
338
          framework::LoDTensor *cur_grad_tensor =
339
              cur_grad_var->GetMutable<framework::LoDTensor>();
340
          cur_grad_tensor->ShareDataWith(ex_grad_tensor);
Y
Yu Yang 已提交
341
        }
Y
Yan Chunwei 已提交
342
      }
343
    }
Y
Yu Yang 已提交
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (step_id > 0) {
      LinkTensorWithCallback(scope, Outputs(kInputGrads), cur_scope,
                             GradVarLists(Inputs(kInputs)),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               if (src_tensor.memory_size() ==
                                   0) {  // Inside Gradient is not created.
                                 return;
                               }
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             },
                             true /*is_backward*/);
    }

364 365 366 367
    VLOG(5) << "Recurrent memory linking finished ";
    // Run step block with cur_scope
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
368
                                false /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
369

370
    VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
371

372
    auto local_var_names = LocalVarNames(cur_scope);
Y
Yu Yang 已提交
373

374 375 376 377 378 379 380 381
    // Accumulate params
    //   if (step == 0):
    //      outside::param_grad = 0.0
    //   outside::param_grad += inside::param_grad
    {
      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yu Yang 已提交
382

383 384
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
385

386 387 388 389 390
        // If does not compute gradient of that variable inside rnn, just
        // continue
        if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
          continue;
        }
Y
Yu Yang 已提交
391

392 393 394 395 396 397
        // zero gradient variable in step 0
        if (step_id == 0) {
          auto &inside_tensor =
              cur_scope.FindVar(inside_grad_name)->Get<framework::LoDTensor>();
          framework::AttributeMap attrs;
          attrs["dtype"] = inside_tensor.type();
398
          attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
399 400 401 402 403 404 405
          attrs["value"] = 0.0f;

          auto zero_op = framework::OpRegistry::CreateOp(
              "fill_constant", framework::VariableNameMap{},
              {{"Out", {pg_names[param_id]}}}, attrs);
          zero_op->Run(scope, place);
        }
Y
Yu Yang 已提交
406

407
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
408

409 410 411 412 413 414
        // sum gradient
        auto sum_op = framework::OpRegistry::CreateOp(
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
        sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
415

416
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yan Chunwei 已提交
417
      }
418 419 420 421 422
    }
    VLOG(5) << "Accumulate Parameter finished ";

    // Copy input gradient from inside to outside
    //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
423 424 425 426 427 428 429 430 431
    if (step_id == 0) {
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            // Alloc outside memory
432 433 434
            outside->Resize(PrependDims(seq_len, inside.dims()));
            outside->mutable_data(place, inside.type());

435 436 437 438 439
            auto dst = outside->Slice(seq_offset, seq_offset + 1);
            framework::TensorCopy(inside, place, dev_ctx, &dst);
          },
          true /*is_backward*/);
    }
440 441 442 443 444 445 446 447 448 449 450
    VLOG(5) << "Link outside gradient finished ";

    if (has_state) {
      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
451
              outside->mutable_data(place, inside.type());
452 453 454 455
              framework::TensorCopy(inside, place, dev_ctx, outside);
            },
            true /*is_backward*/);
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
456
      }
Y
Yan Chunwei 已提交
457
    }
458
    scopes.BackwardNext(dev_ctx, const_cast<framework::Scope *>(&scope));
Y
Yan Chunwei 已提交
459
  }
460 461
  // Delete the scope of StepScopes
  auto *var = scope.FindVar(Input(kStepScopes));
462
  PADDLE_ENFORCE_NOT_NULL(var);
463 464 465
  auto *step_scopes = var->GetMutable<StepScopeVar>();
  ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope), step_scopes);
}
Y
Yu Yang 已提交
466

467 468 469 470
StepScopes RecurrentGradOp::CreateStepScopes(
    const platform::DeviceContext &dev_ctx, const framework::Scope &scope,
    size_t seq_len) const {
  auto *var = scope.FindVar(Input(kStepScopes));
471
  PADDLE_ENFORCE_NOT_NULL(var);
472 473 474
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
}
Y
Yu Yang 已提交
475

476 477 478 479 480 481
std::unordered_set<std::string> RecurrentGradOp::List2Set(
    const std::vector<std::string> &list) const {
  std::unordered_set<std::string> local_var_name_set;
  local_var_name_set.reserve(list.size());
  for (auto &each : list) {
    local_var_name_set.insert(each);
Y
Yu Yang 已提交
482
  }
483 484
  return local_var_name_set;
}
Y
Yu Yang 已提交
485

486 487 488 489
std::unordered_set<std::string> RecurrentGradOp::LocalVarNames(
    const framework::Scope &scope) const {
  return this->List2Set(scope.LocalVarNames());
}
490

491 492 493 494 495 496 497 498
std::vector<std::string> RecurrentGradOp::GradVarLists(
    const std::vector<std::string> &var_names) {
  std::vector<std::string> retv;
  retv.reserve(var_names.size());
  std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                 framework::GradVarName);
  return retv;
}
Y
Yu Yang 已提交
499 500

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
501
 public:
Y
Yu Yang 已提交
502
  void Make() override {
503 504 505 506
    AddInput(RecurrentBase::kInputs, "rnn inputs").AsDuplicable();
    AddInput(RecurrentBase::kInitialStates, "rnn initial states")
        .AsDuplicable();
    AddInput(RecurrentBase::kParameters,
Y
Yu Yang 已提交
507
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
508 509
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
510
        .AsDuplicable();
511
    AddOutput(RecurrentBase::kOutputs,
K
kexinzhao 已提交
512
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
513
        .AsDuplicable();
514
    AddOutput(RecurrentBase::kStepScopes,
K
kexinzhao 已提交
515
              "StepScopes contain all local variables in each time step.");
516 517 518 519 520 521
    AddAttr<bool>(RecurrentBase::kHasStates, "Whether has states.")
        .SetDefault(false);
    AddAttr<std::vector<std::string>>(
        RecurrentBase::kExStates,
        string::Sprintf(
            R"DOC(The ex-state variable names.
Y
Yu Yang 已提交
522 523
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
524 525
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
Y
Yu Yang 已提交
526
    AddAttr<std::vector<std::string>>(
527
        RecurrentBase::kStates,
Y
Yu Yang 已提交
528 529
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
530 531 532 533 534
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
    AddAttr<framework::BlockDesc *>(RecurrentBase::kStepBlock,
                                    "The step block inside RNN");
    AddAttr<bool>(RecurrentBase::kReverse, R"DOC(Calculate RNN reversely or not.
Y
Yu Yang 已提交
535
By default reverse=False
Y
Yan Chunwei 已提交
536

Y
Yu Yang 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
559 560 561 562 563 564
    AddAttr<bool>(RecurrentBase::kIsTrain, "").SetDefault(true);
    AddAttr<std::vector<std::string>>(RecurrentBase::kSkipEagerDeletionVars,
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());

K
kexinzhao 已提交
565 566 567 568 569
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
570 571 572 573 574 575 576 577

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
578

Y
Yu Yang 已提交
579
 protected:
Y
Yu Yang 已提交
580 581
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
582 583 584 585
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
586
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
587 588 589
    }

    for (auto &output_param : this->OutputNames()) {
590
      if (output_param == RecurrentBase::kStepScopes) {
Y
Yu Yang 已提交
591 592 593 594 595 596 597 598 599 600
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
601
    grad->SetBlockAttr(RecurrentBase::kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
602

Y
Yu Yang 已提交
603
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
604 605 606
  }
};

Y
Yu Yang 已提交
607 608 609
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
610
    std::vector<std::string> output{RecurrentBase::kOutputs};
C
chengduo 已提交
611 612 613

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
614
    if (!ctx->HasInputs(RecurrentBase::kInitialStates)) {
C
chengduo 已提交
615
      PADDLE_ENFORCE_EQ(
616 617 618 619
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kExStates)
              .size(),
          0, "The Attr(%s) should be empty.", RecurrentBase::kExStates);
C
chengduo 已提交
620
      PADDLE_ENFORCE_EQ(
621 622 623 624
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kStates)
              .size(),
          0, "The Attr(%s) should be empty.", RecurrentBase::kStates);
Y
Yu Yang 已提交
625
    }
C
chengduo 已提交
626

627 628 629 630 631 632
    PADDLE_ENFORCE_EQ(ctx->HasInputs(RecurrentBase::kInputs), true,
                      "The input(%s) should not be empty.",
                      RecurrentBase::kInputs);
    PADDLE_ENFORCE_EQ(ctx->HasInputs(RecurrentBase::kOutputs), true,
                      "The input(%s) should not be empty.",
                      RecurrentBase::kOutputs);
C
chengduo 已提交
633 634

    // In some case the kInitialStates is empty.
635
    if (ctx->HasInputs(RecurrentBase::kInitialStates)) {
636 637 638 639
      PADDLE_ENFORCE_EQ(ctx->HasOutputs(framework::GradVarName(
                            RecurrentBase::kInitialStates)),
                        true, "The output of(%s) should not be empty.",
                        framework::GradVarName(RecurrentBase::kInitialStates));
640 641
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInitialStates),
                         ctx->GetInputsDim(RecurrentBase::kInitialStates));
Y
Yan Chunwei 已提交
642
    }
C
chengduo 已提交
643

644 645
    PADDLE_ENFORCE_EQ(
        ctx->HasOutputs(framework::GradVarName(RecurrentBase::kInputs)), true,
646 647 648 649
        "The output of(%s) should not be empty.",
        framework::GradVarName(RecurrentBase::kInputs));
    ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInputs),
                       ctx->GetInputsDim(RecurrentBase::kInputs));
C
chengduo 已提交
650 651

    // In some case the kParameters is empty.
652
    if (ctx->HasInputs(RecurrentBase::kParameters)) {
653
      PADDLE_ENFORCE_EQ(
654
          ctx->HasOutputs(framework::GradVarName(RecurrentBase::kParameters)),
655
          true, "The output of(%s) should not be empty.",
656 657 658
          framework::GradVarName(RecurrentBase::kParameters));
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kParameters),
                         ctx->GetInputsDim(RecurrentBase::kParameters));
Y
Yu Yang 已提交
659 660 661
    }
  }
};
Y
Yan Chunwei 已提交
662 663 664 665

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
666 667 668 669 670
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);