recurrent_op.cc 27.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yu Yang 已提交
15
#include <vector>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21 22 23 24 25
constexpr char kInputs[] = "inputs";
constexpr char kInitialStates[] = "initial_states";
constexpr char kParameters[] = "parameters";
constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes";
C
chengduo 已提交
26
constexpr char kHasStates[] = "has_states";
Y
Yu Yang 已提交
27 28
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
29
constexpr char kStepBlock[] = "sub_block";
Y
Yu Yang 已提交
30 31 32 33 34 35 36
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
Y
Yan Chunwei 已提交
37

Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
using StepScopeVar = std::vector<framework::Scope *>;

// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
class StepScopes {
 public:
  StepScopes(const framework::Scope &parent, StepScopeVar *scopes,
             bool is_train, size_t seq_len, bool is_backward = false)
      : counter_(is_backward ? seq_len - 1 : 0UL),
        scopes_(scopes),
        is_train_(is_train),
        is_backward_(is_backward) {
    size_t num_step_scopes = is_train ? seq_len : 2;
    PADDLE_ENFORCE(is_train || !is_backward,
                   "Cannot backward when is not training");
    if (!is_backward_) {
      PADDLE_ENFORCE(scopes->empty());
      scopes->reserve(static_cast<size_t>(num_step_scopes));
      for (size_t i = 0; i < num_step_scopes; ++i) {
        scopes->emplace_back(&parent.NewScope());
      }
Y
Yan Chunwei 已提交
71
    }
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  }

  framework::Scope &CurScope() { return GetScope(counter_); }

  framework::Scope &ExScope() {
    auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
    return scope;
  }

  void Next() {
    if (is_backward_) {
      --counter_;
    } else {
      ++counter_;
    }
  }

 private:
  framework::Scope &GetScope(size_t scope_id) const {
    if (!is_train_) {
      scope_id %= 2;
    }
    PADDLE_ENFORCE_LT(scope_id, scopes_->size());
    return *(*scopes_)[scope_id];
  }

  size_t counter_;
  StepScopeVar *scopes_;
  bool is_train_;
  bool is_backward_;
};

// Base class for RecurrentOp/RecurrentGradOp
//    Some common protected functions for RecurrentOp/RecurrentGradOp
class RecurrentBase : public framework::OperatorBase {
 public:
  RecurrentBase(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  // Get SequenceLength from Scope
  //   The sequence length is got from input tensor. The input tensor's
  //   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
  //   is SEQ_LEN. The second of the tensor's shape could be the batch size or
  //   nested sequence length.
  int64_t GetSequenceLength(const framework::Scope &scope) const {
    // Dim format SEQ_LEN, BATCH_SIZE, ...
    int64_t seq_len = -1;
    auto &all_inputs = Inputs(kInputs);
    PADDLE_ENFORCE(!all_inputs.empty());
    for (auto &iname : all_inputs) {
      auto *var = scope.FindVar(iname);
      PADDLE_ENFORCE(var != nullptr);
      PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
      auto &dim = var->Get<framework::LoDTensor>().dims();
      if (seq_len == -1) {
        seq_len = dim[0];
      } else {
        PADDLE_ENFORCE_EQ(seq_len, dim[0]);
      }
    }
    return seq_len;
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   dst_tensor.ShareDataWith(src_tensor)
  static void LinkTensor(const framework::Scope &src_scope,
                         const std::vector<std::string> &src_vars,
                         framework::Scope *dst_scope,
                         const std::vector<std::string> &dst_vars) {
    LinkTensorWithCallback(
        src_scope, src_vars, dst_scope, dst_vars,
        [&](const framework::Tensor &src, framework::Tensor *dst) {
          dst->ShareDataWith(src);
        });
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     framework::Scope *dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
161 162
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
163 164
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
165
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
166 167
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176 177 178
    }
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.FindVar, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     const framework::Scope &dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
179 180
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
181 182
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
183
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
184 185
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }
  }

  // (seq_len, shape) -> return [seq_len] + list(shape)
  static framework::DDim PrependDims(size_t seq_len,
                                     const framework::DDim &src) {
    auto dims = framework::vectorize(src);
    dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
    return framework::make_ddim(dims);
  }

 private:
  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           framework::Scope *dst_scope,
C
chengduo 已提交
202 203
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
Y
Yu Yang 已提交
204
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
205 206 207 208
    if (is_backward && src_var == nullptr) {
      return;
    }
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216 217 218 219
    auto &src_tensor = src_var->Get<framework::LoDTensor>();

    auto *dst_var = dst_scope->Var(dst_var_name);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }

  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           const framework::Scope &dst_scope,
C
chengduo 已提交
220 221 222 223 224 225
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
    auto *dst_var = dst_scope.FindVar(dst_var_name);
    if (is_backward && dst_var == nullptr) {
      return;
    }
Y
Yu Yang 已提交
226
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
227
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
228
    auto &src_tensor = src_var->Get<framework::LoDTensor>();
C
chengduo 已提交
229
    PADDLE_ENFORCE(dst_var != nullptr, "%s is not found.", dst_var_name);
Y
Yu Yang 已提交
230 231 232 233 234 235 236 237 238 239 240 241
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }
};

class RecurrentOp : public RecurrentBase {
 public:
  RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

242 243 244
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
245
    bool has_state = Attr<bool>(kHasStates);
Y
Yu Yang 已提交
246
    auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
M
minqiyang 已提交
247
    VLOG(3) << "Static RNN input sequence length = " << seq_len;
Y
Yu Yang 已提交
248 249 250
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

C
chengduo 已提交
251 252 253 254
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

D
dzhwinter 已提交
255
    framework::Executor executor(place);
Y
Yu Yang 已提交
256
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
257

Y
Yu Yang 已提交
258 259 260 261
    auto *program = block->Program();

    for (size_t i = 0; i < seq_len; ++i) {
      size_t seq_offset = reverse ? seq_len - i - 1 : i;
M
minqiyang 已提交
262
      VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

      auto &cur_scope = scopes.CurScope();

      // Link outside::input --> inside::input
      //   inside::input = outside::input[seq_offset: seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
          [&seq_offset](const framework::Tensor &outside,
                        framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });

C
chengduo 已提交
278 279 280 281 282 283 284 285 286 287 288
      if (has_state) {
        if (i == 0) {
          // Link initial states  --> ex_states
          LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                     Attr<std::vector<std::string>>(kExStates));
        } else {
          auto &ex_scope = scopes.ExScope();
          // Link ex_scope::state --> cur_scope::ex_state
          LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                     &cur_scope, Attr<std::vector<std::string>>(kExStates));
        }
Y
Yu Yang 已提交
289 290 291 292
      }

      // Every inputs are linked now, execute!
      executor.Run(*program, &cur_scope, block->ID(),
S
sneaxiy 已提交
293 294 295
                   false /*create_local_scope*/, true /*create_vars*/,
                   std::vector<std::string>() /*skip_ref_cnt_vars*/,
                   true /*force_disable_gc*/);
Y
Yu Yang 已提交
296 297 298 299 300 301 302 303 304

      // Copy inside::output -> outside::output
      //    outside::output[seq_offset: seq_offset + 1] = inside::output
      this->LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            if (i == 0) {  // create output tensor at begin
              dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
D
dzhwinter 已提交
305
              dst_tensor->mutable_data(place, src_tensor.type());
Y
Yu Yang 已提交
306 307 308 309 310
            }

            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
Y
Yi Wang 已提交
311
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
          });

      scopes.Next();
    }
  }

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
    auto *var = scope.FindVar(Output(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len);
  }
};

class RecurrentGradOp : public RecurrentBase {
 public:
  RecurrentGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

336 337 338
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
339 340
    bool has_state = Attr<bool>(kHasStates);
    const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));
Y
Yu Yang 已提交
341 342 343
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
344
    framework::Executor executor(place);
Y
Yu Yang 已提交
345
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
346 347
    auto *program = block->Program();

D
dzhwinter 已提交
348
    // get device context from pool
Y
Yu Yang 已提交
349 350
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
351

Y
Yu Yang 已提交
352 353
    for (size_t step_id = 0; step_id < seq_len; ++step_id) {
      size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
M
minqiyang 已提交
354
      VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
Y
Yu Yang 已提交
355
      auto &cur_scope = scopes.CurScope();
C
chengduo 已提交
356

Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365
      // Link outside::output_grads --> inside::output_grads
      //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
          [&](const framework::Tensor &outside, framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
C
chengduo 已提交
366 367
          },
          true /*is_backward*/);
Y
Yu Yang 已提交
368 369
      auto og_set = List2Set(Inputs(kOutputGrads));

M
minqiyang 已提交
370
      if (VLOG_IS_ON(10)) {
Y
Yu Yang 已提交
371 372 373
        std::ostringstream sout;
        std::copy(og_set.begin(), og_set.end(),
                  std::ostream_iterator<std::string>(sout, ","));
M
minqiyang 已提交
374
        VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
Y
Yu Yang 已提交
375 376
      }

C
chengduo 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
      if (has_state) {
        // Link states
        //   if cur_scope::cur_state_grad in out_grads:
        //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
        //   else:
        //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
        if (step_id != 0) {  // not at beginning
          auto &ex_scope = scopes.ExScope();
          auto ex_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kExStates));
          auto cur_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kStates));

          PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
          for (size_t i = 0; i < ex_state_grads.size(); ++i) {
            auto &cur_grad = cur_state_grads[i];
            auto &ex_grad = ex_state_grads[i];
            auto &ex_tensor =
                ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

            VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
            auto *cur_grad_var = cur_scope.Var(cur_grad);
            auto cur_grad_tensor =
                cur_grad_var->GetMutable<framework::LoDTensor>();
            framework::TensorCopy(ex_tensor, place, dev_ctx, cur_grad_tensor);
          }
Y
Yu Yang 已提交
403
        }
Y
Yan Chunwei 已提交
404
      }
Y
Yu Yang 已提交
405

M
minqiyang 已提交
406
      VLOG(5) << "Recurrent memory linking finished ";
Y
Yu Yang 已提交
407 408
      // Run step block with cur_scope
      executor.Run(*program, &cur_scope, block->ID(),
S
sneaxiy 已提交
409 410 411
                   false /*create_local_scope*/, true /*create_vars*/,
                   std::vector<std::string>() /*skip_ref_cnt_vars*/,
                   true /*force_disable_gc*/);
Y
Yu Yang 已提交
412

M
minqiyang 已提交
413
      VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
414 415 416 417 418 419 420 421 422 423 424 425

      auto local_var_names = LocalVarNames(cur_scope);

      // Accumulate params
      //   if (step == 0):
      //      outside::param_grad = 0.0
      //   outside::param_grad += inside::param_grad
      {
        auto &pg_names = Outputs(kParamGrads);
        auto &p_names = Inputs(kParameters);
        PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());

Y
Yu Yang 已提交
426 427
        for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
          auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
428 429 430 431 432 433 434 435 436 437 438 439

          // If does not compute gradient of that variable inside rnn, just
          // continue
          if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
            continue;
          }

          // zero gradient variable in step 0
          if (step_id == 0) {
            auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
                                      ->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
440
            attrs["dtype"] = inside_tensor.type();
Y
Yu Yang 已提交
441 442 443 444
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
445 446
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
D
dzhwinter 已提交
447
            zero_op->Run(scope, place);
Y
Yu Yang 已提交
448 449
          }

Y
Yu Yang 已提交
450
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
451

C
chengduo 已提交
452
          // sum gradient
Y
Yu Yang 已提交
453
          auto sum_op = framework::OpRegistry::CreateOp(
Y
Yu Yang 已提交
454
              "sum", {{"X", {pg_names[param_id], new_inside_name}}},
455 456
              {{"Out", {pg_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
457
          sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
458 459

          cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yu Yang 已提交
460
        }
Y
Yan Chunwei 已提交
461
      }
M
minqiyang 已提交
462
      VLOG(5) << "Accumulate Parameter finished ";
Y
Yu Yang 已提交
463 464 465 466 467 468 469 470 471 472 473 474

      // Copy input gradient from inside to outside
      //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            if (step_id == 0) {  // alloc memory
              outside->Resize(PrependDims(seq_len, inside.dims()));
D
dzhwinter 已提交
475
              outside->mutable_data(place, inside.type());
Y
Yu Yang 已提交
476 477 478
            }

            auto dst = outside->Slice(seq_offset, seq_offset + 1);
Y
Yi Wang 已提交
479
            framework::TensorCopy(inside, place, dev_ctx, &dst);
C
chengduo 已提交
480 481
          },
          true /*is_backward*/);
M
minqiyang 已提交
482
      VLOG(5) << "Link outside gradient finished ";
Y
Yu Yang 已提交
483

C
chengduo 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
      if (has_state) {
        if (step_id + 1 == seq_len) {  // at_end
          // copy initialize states gradient from inside to outside
          LinkTensorWithCallback(
              cur_scope,
              GradVarLists(Attr<std::vector<std::string>>(kExStates)), scope,
              Outputs(kInitStateGrads),
              [&](const framework::LoDTensor &inside,
                  framework::LoDTensor *outside) {
                outside->Resize(inside.dims());
                outside->mutable_data(place, inside.type());
                framework::TensorCopy(inside, place, dev_ctx, outside);
              },
              true /*is_backward*/);
          VLOG(5) << "Link initialize state gradient finished ";
        }
Y
Yu Yang 已提交
500 501
      }
      scopes.Next();
Y
Yan Chunwei 已提交
502
    }
C
chengduo 已提交
503 504 505 506 507 508 509 510
    // Delete the scope of StepScopes
    dev_ctx.Wait();
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
    auto step_scopes = var->GetMutable<StepScopeVar>();
    for (auto *sub_scope : *step_scopes) {
      const_cast<framework::Scope &>(scope).DeleteScope(sub_scope);
    }
511
    step_scopes->clear();
Y
Yan Chunwei 已提交
512
  }
Y
Yu Yang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
  }

  std::unordered_set<std::string> List2Set(
      const std::vector<std::string> &list) const {
    std::unordered_set<std::string> local_var_name_set;
    local_var_name_set.reserve(list.size());
    for (auto &each : list) {
      local_var_name_set.insert(each);
    }
    return local_var_name_set;
  }

  std::unordered_set<std::string> LocalVarNames(
      const framework::Scope &scope) const {
Y
Yang Yu 已提交
535
    return this->List2Set(scope.LocalVarNames());
Y
Yu Yang 已提交
536 537 538 539 540 541 542 543 544 545 546 547
  }
  static std::vector<std::string> GradVarLists(
      const std::vector<std::string> &var_names) {
    std::vector<std::string> retv;
    retv.reserve(var_names.size());
    std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                   framework::GradVarName);
    return retv;
  }
};

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
548
 public:
Y
Yu Yang 已提交
549
  void Make() override {
Y
Yu Yang 已提交
550 551 552 553
    AddInput(kInputs, "rnn inputs").AsDuplicable();
    AddInput(kInitialStates, "rnn initial states").AsDuplicable();
    AddInput(kParameters,
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
554 555
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
556
        .AsDuplicable();
Y
Yu Yang 已提交
557
    AddOutput(kOutputs,
K
kexinzhao 已提交
558
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
559
        .AsDuplicable();
Y
Yu Yang 已提交
560
    AddOutput(kStepScopes,
K
kexinzhao 已提交
561
              "StepScopes contain all local variables in each time step.");
C
chengduo 已提交
562
    AddAttr<bool>(kHasStates, "Whether has states.").SetDefault(false);
Y
Yu Yang 已提交
563 564 565 566 567 568 569 570 571 572 573
    AddAttr<std::vector<std::string>>(kExStates,
                                      string::Sprintf(
                                          R"DOC(The ex-state variable names.
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
                                          kExStates, kStates, kInitStateGrads));
    AddAttr<std::vector<std::string>>(
        kStates,
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
            kExStates, kStates, kInitStateGrads));
Y
Yu Yang 已提交
574
    AddAttr<framework::BlockDesc *>(kStepBlock, "The step block inside RNN");
Y
Yu Yang 已提交
575 576
    AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
By default reverse=False
Y
Yan Chunwei 已提交
577

Y
Yu Yang 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
    AddAttr<bool>(kIsTrain, "").SetDefault(true);
K
kexinzhao 已提交
601 602 603 604 605
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
606 607 608 609 610 611 612 613

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
614

Y
Yu Yang 已提交
615
 protected:
Y
Yu Yang 已提交
616 617
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
618 619 620 621
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
622
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636
    }

    for (auto &output_param : this->OutputNames()) {
      if (output_param == kStepScopes) {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
637
    grad->SetBlockAttr(kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
638

Y
Yu Yang 已提交
639
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
640 641 642
  }
};

Y
Yu Yang 已提交
643 644 645 646
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    std::vector<std::string> output{kOutputs};
C
chengduo 已提交
647 648 649 650 651 652 653 654 655 656

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
    if (!ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kExStates).size(), 0,
          "The Attr(%s) should be empty.", kExStates);
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kStates).size(), 0,
          "The Attr(%s) should be empty.", kStates);
Y
Yu Yang 已提交
657
    }
C
chengduo 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670

    PADDLE_ENFORCE(ctx->HasInputs(kInputs),
                   "The input(%s) should not be empty.", kInputs);
    PADDLE_ENFORCE(ctx->HasInputs(kOutputs),
                   "The input(%s) should not be empty.", kOutputs);

    // In some case the kInitialStates is empty.
    if (ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInitialStates)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kInitialStates));
      ctx->SetOutputsDim(framework::GradVarName(kInitialStates),
                         ctx->GetInputsDim(kInitialStates));
Y
Yan Chunwei 已提交
671
    }
C
chengduo 已提交
672 673 674 675 676 677 678 679

    PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInputs)),
                   "The output of(%s) should not be empty.",
                   framework::GradVarName(kInputs));
    ctx->SetOutputsDim(framework::GradVarName(kInputs),
                       ctx->GetInputsDim(kInputs));

    // In some case the kParameters is empty.
Y
Yu Yang 已提交
680
    if (ctx->HasInputs(kParameters)) {
C
chengduo 已提交
681 682 683
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kParameters));
Y
Yu Yang 已提交
684 685 686 687 688
      ctx->SetOutputsDim(framework::GradVarName(kParameters),
                         ctx->GetInputsDim(kParameters));
    }
  }
};
Y
Yan Chunwei 已提交
689 690 691 692

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
693 694 695 696 697
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);