recurrent_op.cc 27.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yu Yang 已提交
15
#include <vector>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21 22 23 24 25
constexpr char kInputs[] = "inputs";
constexpr char kInitialStates[] = "initial_states";
constexpr char kParameters[] = "parameters";
constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes";
C
chengduo 已提交
26
constexpr char kHasStates[] = "has_states";
Y
Yu Yang 已提交
27 28
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
29
constexpr char kStepBlock[] = "sub_block";
Y
Yu Yang 已提交
30 31 32 33 34 35 36
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
Y
Yan Chunwei 已提交
37

Y
Yu Yang 已提交
38 39
using StepScopeVar = std::vector<framework::Scope *>;

40 41 42 43 44 45 46 47 48 49 50 51 52 53
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
    parent_scope->DeleteScope(sub_scope);
  }

  step_scopes->clear();
}

Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
class StepScopes {
 public:
70 71
  StepScopes(const platform::DeviceContext &dev_ctx,
             const framework::Scope &parent, StepScopeVar *scopes,
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80
             bool is_train, size_t seq_len, bool is_backward = false)
      : counter_(is_backward ? seq_len - 1 : 0UL),
        scopes_(scopes),
        is_train_(is_train),
        is_backward_(is_backward) {
    size_t num_step_scopes = is_train ? seq_len : 2;
    PADDLE_ENFORCE(is_train || !is_backward,
                   "Cannot backward when is not training");
    if (!is_backward_) {
81
      ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
Y
Yu Yang 已提交
82 83 84 85
      scopes->reserve(static_cast<size_t>(num_step_scopes));
      for (size_t i = 0; i < num_step_scopes; ++i) {
        scopes->emplace_back(&parent.NewScope());
      }
Y
Yan Chunwei 已提交
86
    }
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }

  framework::Scope &CurScope() { return GetScope(counter_); }

  framework::Scope &ExScope() {
    auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
    return scope;
  }

  void Next() {
    if (is_backward_) {
      --counter_;
    } else {
      ++counter_;
    }
  }

 private:
  framework::Scope &GetScope(size_t scope_id) const {
    if (!is_train_) {
      scope_id %= 2;
    }
    PADDLE_ENFORCE_LT(scope_id, scopes_->size());
    return *(*scopes_)[scope_id];
  }

  size_t counter_;
  StepScopeVar *scopes_;
  bool is_train_;
  bool is_backward_;
};

// Base class for RecurrentOp/RecurrentGradOp
//    Some common protected functions for RecurrentOp/RecurrentGradOp
class RecurrentBase : public framework::OperatorBase {
 public:
  RecurrentBase(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  // Get SequenceLength from Scope
  //   The sequence length is got from input tensor. The input tensor's
  //   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
  //   is SEQ_LEN. The second of the tensor's shape could be the batch size or
  //   nested sequence length.
  int64_t GetSequenceLength(const framework::Scope &scope) const {
    // Dim format SEQ_LEN, BATCH_SIZE, ...
    int64_t seq_len = -1;
    auto &all_inputs = Inputs(kInputs);
    PADDLE_ENFORCE(!all_inputs.empty());
    for (auto &iname : all_inputs) {
      auto *var = scope.FindVar(iname);
      PADDLE_ENFORCE(var != nullptr);
      PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
      auto &dim = var->Get<framework::LoDTensor>().dims();
      if (seq_len == -1) {
        seq_len = dim[0];
      } else {
        PADDLE_ENFORCE_EQ(seq_len, dim[0]);
      }
    }
    return seq_len;
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   dst_tensor.ShareDataWith(src_tensor)
  static void LinkTensor(const framework::Scope &src_scope,
                         const std::vector<std::string> &src_vars,
                         framework::Scope *dst_scope,
                         const std::vector<std::string> &dst_vars) {
    LinkTensorWithCallback(
        src_scope, src_vars, dst_scope, dst_vars,
        [&](const framework::Tensor &src, framework::Tensor *dst) {
          dst->ShareDataWith(src);
        });
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     framework::Scope *dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
176 177
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
178 179
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
180
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
181 182
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
183 184 185 186 187 188 189 190 191 192 193
    }
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.FindVar, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     const framework::Scope &dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
194 195
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
196 197
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
198
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
199 200
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    }
  }

  // (seq_len, shape) -> return [seq_len] + list(shape)
  static framework::DDim PrependDims(size_t seq_len,
                                     const framework::DDim &src) {
    auto dims = framework::vectorize(src);
    dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
    return framework::make_ddim(dims);
  }

 private:
  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           framework::Scope *dst_scope,
C
chengduo 已提交
217 218
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
Y
Yu Yang 已提交
219
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
220 221 222 223
    if (is_backward && src_var == nullptr) {
      return;
    }
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234
    auto &src_tensor = src_var->Get<framework::LoDTensor>();

    auto *dst_var = dst_scope->Var(dst_var_name);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }

  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           const framework::Scope &dst_scope,
C
chengduo 已提交
235 236 237 238 239 240
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
    auto *dst_var = dst_scope.FindVar(dst_var_name);
    if (is_backward && dst_var == nullptr) {
      return;
    }
Y
Yu Yang 已提交
241
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
242
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
243
    auto &src_tensor = src_var->Get<framework::LoDTensor>();
C
chengduo 已提交
244
    PADDLE_ENFORCE(dst_var != nullptr, "%s is not found.", dst_var_name);
Y
Yu Yang 已提交
245 246 247 248 249 250 251 252 253 254 255 256
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }
};

class RecurrentOp : public RecurrentBase {
 public:
  RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

257 258 259
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
260
    bool has_state = Attr<bool>(kHasStates);
Y
Yu Yang 已提交
261 262
    auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));

C
chengduo 已提交
263 264 265 266
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

267 268 269 270
    VLOG(3) << "Static RNN input sequence length = " << seq_len;
    StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
271
    framework::Executor executor(place);
Y
Yu Yang 已提交
272
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
273

Y
Yu Yang 已提交
274
    auto *program = block->Program();
275 276 277
    auto ctx = executor.Prepare(
        *program, block->ID(), std::vector<std::string>() /*skip_ref_cnt_vars*/,
        true /*force_disable_gc*/);
Y
Yu Yang 已提交
278 279 280

    for (size_t i = 0; i < seq_len; ++i) {
      size_t seq_offset = reverse ? seq_len - i - 1 : i;
M
minqiyang 已提交
281
      VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

      auto &cur_scope = scopes.CurScope();

      // Link outside::input --> inside::input
      //   inside::input = outside::input[seq_offset: seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
          [&seq_offset](const framework::Tensor &outside,
                        framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });

C
chengduo 已提交
297 298 299 300 301 302 303 304 305 306 307
      if (has_state) {
        if (i == 0) {
          // Link initial states  --> ex_states
          LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                     Attr<std::vector<std::string>>(kExStates));
        } else {
          auto &ex_scope = scopes.ExScope();
          // Link ex_scope::state --> cur_scope::ex_state
          LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                     &cur_scope, Attr<std::vector<std::string>>(kExStates));
        }
Y
Yu Yang 已提交
308 309 310
      }

      // Every inputs are linked now, execute!
311 312 313
      executor.RunPreparedContext(ctx.get(), &cur_scope,
                                  false /*create_local_scope*/,
                                  true /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
314 315 316 317 318 319 320 321 322

      // Copy inside::output -> outside::output
      //    outside::output[seq_offset: seq_offset + 1] = inside::output
      this->LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            if (i == 0) {  // create output tensor at begin
              dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
D
dzhwinter 已提交
323
              dst_tensor->mutable_data(place, src_tensor.type());
Y
Yu Yang 已提交
324 325 326 327 328
            }

            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
Y
Yi Wang 已提交
329
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
Y
Yu Yang 已提交
330 331 332 333 334 335 336
          });

      scopes.Next();
    }
  }

 private:
337 338
  StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx,
                              const framework::Scope &scope,
Y
Yu Yang 已提交
339 340 341
                              size_t seq_len) const {
    auto *var = scope.FindVar(Output(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
342
    return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354
                      Attr<bool>(kIsTrain), seq_len);
  }
};

class RecurrentGradOp : public RecurrentBase {
 public:
  RecurrentGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

355 356 357
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
358 359
    bool has_state = Attr<bool>(kHasStates);
    const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));
360 361 362 363 364 365

    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

    StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
Y
Yu Yang 已提交
366 367
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
368
    framework::Executor executor(place);
Y
Yu Yang 已提交
369
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
370
    auto *program = block->Program();
371 372 373
    auto ctx = executor.Prepare(
        *program, block->ID(), std::vector<std::string>() /*skip_ref_cnt_vars*/,
        true /*force_disable_gc*/);
Y
Yu Yang 已提交
374 375 376

    for (size_t step_id = 0; step_id < seq_len; ++step_id) {
      size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
M
minqiyang 已提交
377
      VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
Y
Yu Yang 已提交
378
      auto &cur_scope = scopes.CurScope();
C
chengduo 已提交
379

Y
Yu Yang 已提交
380 381 382 383 384 385 386 387 388
      // Link outside::output_grads --> inside::output_grads
      //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
          [&](const framework::Tensor &outside, framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
C
chengduo 已提交
389 390
          },
          true /*is_backward*/);
Y
Yu Yang 已提交
391 392
      auto og_set = List2Set(Inputs(kOutputGrads));

M
minqiyang 已提交
393
      if (VLOG_IS_ON(10)) {
Y
Yu Yang 已提交
394 395 396
        std::ostringstream sout;
        std::copy(og_set.begin(), og_set.end(),
                  std::ostream_iterator<std::string>(sout, ","));
M
minqiyang 已提交
397
        VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
Y
Yu Yang 已提交
398 399
      }

C
chengduo 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
      if (has_state) {
        // Link states
        //   if cur_scope::cur_state_grad in out_grads:
        //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
        //   else:
        //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
        if (step_id != 0) {  // not at beginning
          auto &ex_scope = scopes.ExScope();
          auto ex_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kExStates));
          auto cur_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kStates));

          PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
          for (size_t i = 0; i < ex_state_grads.size(); ++i) {
            auto &cur_grad = cur_state_grads[i];
            auto &ex_grad = ex_state_grads[i];
            auto &ex_tensor =
                ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

            VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
            auto *cur_grad_var = cur_scope.Var(cur_grad);
            auto cur_grad_tensor =
                cur_grad_var->GetMutable<framework::LoDTensor>();
            framework::TensorCopy(ex_tensor, place, dev_ctx, cur_grad_tensor);
          }
Y
Yu Yang 已提交
426
        }
Y
Yan Chunwei 已提交
427
      }
Y
Yu Yang 已提交
428

M
minqiyang 已提交
429
      VLOG(5) << "Recurrent memory linking finished ";
Y
Yu Yang 已提交
430
      // Run step block with cur_scope
431 432 433
      executor.RunPreparedContext(ctx.get(), &cur_scope,
                                  false /*create_local_scope*/,
                                  true /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
434

M
minqiyang 已提交
435
      VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444 445 446 447

      auto local_var_names = LocalVarNames(cur_scope);

      // Accumulate params
      //   if (step == 0):
      //      outside::param_grad = 0.0
      //   outside::param_grad += inside::param_grad
      {
        auto &pg_names = Outputs(kParamGrads);
        auto &p_names = Inputs(kParameters);
        PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());

Y
Yu Yang 已提交
448 449
        for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
          auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
450 451 452 453 454 455 456 457 458 459 460 461

          // If does not compute gradient of that variable inside rnn, just
          // continue
          if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
            continue;
          }

          // zero gradient variable in step 0
          if (step_id == 0) {
            auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
                                      ->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
462
            attrs["dtype"] = inside_tensor.type();
Y
Yu Yang 已提交
463 464 465 466
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
467 468
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
D
dzhwinter 已提交
469
            zero_op->Run(scope, place);
Y
Yu Yang 已提交
470 471
          }

Y
Yu Yang 已提交
472
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
473

C
chengduo 已提交
474
          // sum gradient
Y
Yu Yang 已提交
475
          auto sum_op = framework::OpRegistry::CreateOp(
Y
Yu Yang 已提交
476
              "sum", {{"X", {pg_names[param_id], new_inside_name}}},
477 478
              {{"Out", {pg_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
479
          sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
480 481

          cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yu Yang 已提交
482
        }
Y
Yan Chunwei 已提交
483
      }
M
minqiyang 已提交
484
      VLOG(5) << "Accumulate Parameter finished ";
Y
Yu Yang 已提交
485 486 487 488 489 490 491 492 493 494 495 496

      // Copy input gradient from inside to outside
      //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            if (step_id == 0) {  // alloc memory
              outside->Resize(PrependDims(seq_len, inside.dims()));
D
dzhwinter 已提交
497
              outside->mutable_data(place, inside.type());
Y
Yu Yang 已提交
498 499 500
            }

            auto dst = outside->Slice(seq_offset, seq_offset + 1);
Y
Yi Wang 已提交
501
            framework::TensorCopy(inside, place, dev_ctx, &dst);
C
chengduo 已提交
502 503
          },
          true /*is_backward*/);
M
minqiyang 已提交
504
      VLOG(5) << "Link outside gradient finished ";
Y
Yu Yang 已提交
505

C
chengduo 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
      if (has_state) {
        if (step_id + 1 == seq_len) {  // at_end
          // copy initialize states gradient from inside to outside
          LinkTensorWithCallback(
              cur_scope,
              GradVarLists(Attr<std::vector<std::string>>(kExStates)), scope,
              Outputs(kInitStateGrads),
              [&](const framework::LoDTensor &inside,
                  framework::LoDTensor *outside) {
                outside->Resize(inside.dims());
                outside->mutable_data(place, inside.type());
                framework::TensorCopy(inside, place, dev_ctx, outside);
              },
              true /*is_backward*/);
          VLOG(5) << "Link initialize state gradient finished ";
        }
Y
Yu Yang 已提交
522 523
      }
      scopes.Next();
Y
Yan Chunwei 已提交
524
    }
C
chengduo 已提交
525 526 527
    // Delete the scope of StepScopes
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
528 529 530
    auto *step_scopes = var->GetMutable<StepScopeVar>();
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope),
                    step_scopes);
Y
Yan Chunwei 已提交
531
  }
Y
Yu Yang 已提交
532 533

 private:
534 535
  StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx,
                              const framework::Scope &scope,
Y
Yu Yang 已提交
536 537 538
                              size_t seq_len) const {
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
539
    return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
                      Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
  }

  std::unordered_set<std::string> List2Set(
      const std::vector<std::string> &list) const {
    std::unordered_set<std::string> local_var_name_set;
    local_var_name_set.reserve(list.size());
    for (auto &each : list) {
      local_var_name_set.insert(each);
    }
    return local_var_name_set;
  }

  std::unordered_set<std::string> LocalVarNames(
      const framework::Scope &scope) const {
Y
Yang Yu 已提交
555
    return this->List2Set(scope.LocalVarNames());
Y
Yu Yang 已提交
556 557 558 559 560 561 562 563 564 565 566 567
  }
  static std::vector<std::string> GradVarLists(
      const std::vector<std::string> &var_names) {
    std::vector<std::string> retv;
    retv.reserve(var_names.size());
    std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                   framework::GradVarName);
    return retv;
  }
};

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
568
 public:
Y
Yu Yang 已提交
569
  void Make() override {
Y
Yu Yang 已提交
570 571 572 573
    AddInput(kInputs, "rnn inputs").AsDuplicable();
    AddInput(kInitialStates, "rnn initial states").AsDuplicable();
    AddInput(kParameters,
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
574 575
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
576
        .AsDuplicable();
Y
Yu Yang 已提交
577
    AddOutput(kOutputs,
K
kexinzhao 已提交
578
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
579
        .AsDuplicable();
Y
Yu Yang 已提交
580
    AddOutput(kStepScopes,
K
kexinzhao 已提交
581
              "StepScopes contain all local variables in each time step.");
C
chengduo 已提交
582
    AddAttr<bool>(kHasStates, "Whether has states.").SetDefault(false);
Y
Yu Yang 已提交
583 584 585 586 587 588 589 590 591 592 593
    AddAttr<std::vector<std::string>>(kExStates,
                                      string::Sprintf(
                                          R"DOC(The ex-state variable names.
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
                                          kExStates, kStates, kInitStateGrads));
    AddAttr<std::vector<std::string>>(
        kStates,
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
            kExStates, kStates, kInitStateGrads));
Y
Yu Yang 已提交
594
    AddAttr<framework::BlockDesc *>(kStepBlock, "The step block inside RNN");
Y
Yu Yang 已提交
595 596
    AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
By default reverse=False
Y
Yan Chunwei 已提交
597

Y
Yu Yang 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
    AddAttr<bool>(kIsTrain, "").SetDefault(true);
K
kexinzhao 已提交
621 622 623 624 625
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
626 627 628 629 630 631 632 633

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
634

Y
Yu Yang 已提交
635
 protected:
Y
Yu Yang 已提交
636 637
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
638 639 640 641
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
642
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656
    }

    for (auto &output_param : this->OutputNames()) {
      if (output_param == kStepScopes) {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
657
    grad->SetBlockAttr(kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
658

Y
Yu Yang 已提交
659
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
660 661 662
  }
};

Y
Yu Yang 已提交
663 664 665 666
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    std::vector<std::string> output{kOutputs};
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
    if (!ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kExStates).size(), 0,
          "The Attr(%s) should be empty.", kExStates);
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kStates).size(), 0,
          "The Attr(%s) should be empty.", kStates);
Y
Yu Yang 已提交
677
    }
C
chengduo 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690

    PADDLE_ENFORCE(ctx->HasInputs(kInputs),
                   "The input(%s) should not be empty.", kInputs);
    PADDLE_ENFORCE(ctx->HasInputs(kOutputs),
                   "The input(%s) should not be empty.", kOutputs);

    // In some case the kInitialStates is empty.
    if (ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInitialStates)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kInitialStates));
      ctx->SetOutputsDim(framework::GradVarName(kInitialStates),
                         ctx->GetInputsDim(kInitialStates));
Y
Yan Chunwei 已提交
691
    }
C
chengduo 已提交
692 693 694 695 696 697 698 699

    PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInputs)),
                   "The output of(%s) should not be empty.",
                   framework::GradVarName(kInputs));
    ctx->SetOutputsDim(framework::GradVarName(kInputs),
                       ctx->GetInputsDim(kInputs));

    // In some case the kParameters is empty.
Y
Yu Yang 已提交
700
    if (ctx->HasInputs(kParameters)) {
C
chengduo 已提交
701 702 703
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kParameters));
Y
Yu Yang 已提交
704 705 706 707 708
      ctx->SetOutputsDim(framework::GradVarName(kParameters),
                         ctx->GetInputsDim(kParameters));
    }
  }
};
Y
Yan Chunwei 已提交
709 710 711 712

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
713 714 715 716 717
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);