recurrent_op.cc 26.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16 17 18
#include "paddle/fluid/operators/recurrent_op.h"

#include <algorithm>
#include "paddle/fluid/string/string_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
23 24
using StepScopeVar = std::vector<framework::Scope *>;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
const char RecurrentBase::kInputs[] = "inputs";
const char RecurrentBase::kInitialStates[] = "initial_states";
const char RecurrentBase::kParameters[] = "parameters";
const char RecurrentBase::kOutputs[] = "outputs";
const char RecurrentBase::kStepScopes[] = "step_scopes";
const char RecurrentBase::kHasStates[] = "has_states";
const char RecurrentBase::kExStates[] = "ex_states";
const char RecurrentBase::kStates[] = "states";
const char RecurrentBase::kStepBlock[] = "sub_block";
const char RecurrentBase::kReverse[] = "reverse";
const char RecurrentBase::kIsTrain[] = "is_train";
const char RecurrentBase::kSkipEagerDeletionVars[] = "skip_eager_deletion_vars";
#define GRAD_SUFFIX "@GRAD"
const char RecurrentBase::kInputGrads[] = "inputs" GRAD_SUFFIX;
const char RecurrentBase::kOutputGrads[] = "outputs" GRAD_SUFFIX;
const char RecurrentBase::kParamGrads[] = "parameters" GRAD_SUFFIX;
const char RecurrentBase::kInitStateGrads[] = "initial_states" GRAD_SUFFIX;

43 44 45 46 47 48 49 50 51 52 53 54 55 56
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
    parent_scope->DeleteScope(sub_scope);
  }

  step_scopes->clear();
}

Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70
// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
StepScopes::StepScopes(const platform::DeviceContext &dev_ctx,
                       const framework::Scope &parent, StepScopeVar *scopes,
                       bool is_train, size_t seq_len, bool is_backward)
    : counter_(is_backward ? seq_len - 1 : 0UL),
      scopes_(scopes),
      is_train_(is_train),
      is_backward_(is_backward) {
  size_t num_step_scopes = is_train ? seq_len : 2;
  PADDLE_ENFORCE(is_train || !is_backward,
                 "Cannot backward when is not training");
  if (!is_backward_) {
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
    scopes->reserve(static_cast<size_t>(num_step_scopes));
    for (size_t i = 0; i < num_step_scopes; ++i) {
      scopes->emplace_back(&parent.NewScope());
Y
Yan Chunwei 已提交
86
    }
Y
Yu Yang 已提交
87
  }
88 89 90
}

framework::Scope &StepScopes::CurScope() { return GetScope(counter_); }
Y
Yu Yang 已提交
91

92 93 94 95
framework::Scope &StepScopes::ExScope() {
  auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
  return scope;
}
Y
Yu Yang 已提交
96

97 98 99 100 101
void StepScopes::Next() {
  if (is_backward_) {
    --counter_;
  } else {
    ++counter_;
Y
Yu Yang 已提交
102
  }
103
}
Y
Yu Yang 已提交
104

105 106 107
framework::Scope &StepScopes::GetScope(size_t scope_id) const {
  if (!is_train_) {
    scope_id %= 2;
Y
Yu Yang 已提交
108
  }
109 110 111
  PADDLE_ENFORCE_LT(scope_id, scopes_->size());
  return *(*scopes_)[scope_id];
}
Y
Yu Yang 已提交
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
RecurrentBase::RecurrentBase(const std::string &type,
                             const framework::VariableNameMap &inputs,
                             const framework::VariableNameMap &outputs,
                             const framework::AttributeMap &attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

// Get SequenceLength from Scope
//   The sequence length is got from input tensor. The input tensor's
//   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
//   is SEQ_LEN. The second of the tensor's shape could be the batch size or
//   nested sequence length.
int64_t RecurrentBase::GetSequenceLength(const framework::Scope &scope) const {
  // Dim format SEQ_LEN, BATCH_SIZE, ...
  int64_t seq_len = -1;
  auto &all_inputs = Inputs(kInputs);
  PADDLE_ENFORCE(!all_inputs.empty());
  for (auto &iname : all_inputs) {
    auto *var = scope.FindVar(iname);
    PADDLE_ENFORCE(var != nullptr);
    PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
    auto &dim = var->Get<framework::LoDTensor>().dims();
    if (seq_len == -1) {
      seq_len = dim[0];
    } else {
      PADDLE_ENFORCE_EQ(seq_len, dim[0]);
Y
Yu Yang 已提交
138 139
    }
  }
140 141
  return seq_len;
}
Y
Yu Yang 已提交
142

143 144 145 146 147 148 149 150 151 152 153 154 155
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
//                                   map(dst_scope.Var, dst_vars)):
//   dst_tensor.ShareDataWith(src_tensor)
void RecurrentBase::LinkTensor(const framework::Scope &src_scope,
                               const std::vector<std::string> &src_vars,
                               framework::Scope *dst_scope,
                               const std::vector<std::string> &dst_vars) {
  LinkTensorWithCallback(
      src_scope, src_vars, dst_scope, dst_vars,
      [&](const framework::Tensor &src, framework::Tensor *dst) {
        dst->ShareDataWith(src);
      });
}
Y
Yu Yang 已提交
156

157 158 159 160 161 162 163
// (seq_len, shape) -> return [seq_len] + list(shape)
framework::DDim RecurrentBase::PrependDims(size_t seq_len,
                                           const framework::DDim &src) {
  auto dims = framework::vectorize(src);
  dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
  return framework::make_ddim(dims);
}
Y
Yu Yang 已提交
164

165 166 167 168 169
RecurrentOp::RecurrentOp(const std::string &type,
                         const framework::VariableNameMap &inputs,
                         const framework::VariableNameMap &outputs,
                         const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
170

171 172 173 174
void RecurrentOp::RunImpl(const framework::Scope &scope,
                          const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
Y
Yu Yang 已提交
175

176 177 178
  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);
Y
Yu Yang 已提交
179

180 181 182
  VLOG(3) << "Static RNN input sequence length = " << seq_len;
  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);
Y
Yu Yang 已提交
183

184 185
  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
186

187 188 189 190
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);
Y
Yu Yang 已提交
191

192 193 194
  for (size_t i = 0; i < seq_len; ++i) {
    size_t seq_offset = reverse ? seq_len - i - 1 : i;
    VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
195

196
    auto &cur_scope = scopes.CurScope();
Y
Yu Yang 已提交
197

198 199 200 201 202 203 204 205 206 207 208
    // Link outside::input --> inside::input
    //   inside::input = outside::input[seq_offset: seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
        [&seq_offset](const framework::Tensor &outside,
                      framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        });
Y
Yu Yang 已提交
209

210 211 212 213 214 215 216 217 218 219 220
    if (has_state) {
      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }
Y
Yu Yang 已提交
221 222
    }

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (i > 0) {
      LinkTensorWithCallback(scope, Outputs(kOutputs), cur_scope,
                             Outputs(kOutputs),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             });
    }

    // Linked now, execute!
238 239
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
240 241 242 243 244 245 246
                                false /*create_vars*/, true /* keep_kids */);
    if (i == 0) {
      LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            // create output tensor at begin
247 248 249
            dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
            dst_tensor->mutable_data(place, src_tensor.type());

250 251 252 253 254 255
            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
          });
    }
256 257

    scopes.Next();
Y
Yu Yang 已提交
258
  }
259
}
Y
Yu Yang 已提交
260

261 262 263 264 265 266 267 268
StepScopes RecurrentOp::CreateStepScopes(const platform::DeviceContext &dev_ctx,
                                         const framework::Scope &scope,
                                         size_t seq_len) const {
  auto *var = scope.FindVar(Output(kStepScopes));
  PADDLE_ENFORCE(var != nullptr);
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len);
}
Y
Yu Yang 已提交
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
RecurrentGradOp::RecurrentGradOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
    : RecurrentBase(type, inputs, outputs, attrs) {}

void RecurrentGradOp::RunImpl(const framework::Scope &scope,
                              const platform::Place &place) const {
  bool has_state = Attr<bool>(kHasStates);
  const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));

  // get device context from pool
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &dev_ctx = *pool.Get(place);

  StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
  auto reverse = Attr<bool>(kReverse);

  framework::Executor executor(place);
  auto *block = Attr<framework::BlockDesc *>(kStepBlock);
  auto *program = block->Program();
  auto ctx = executor.Prepare(
      *program, block->ID(), Attr<std::vector<std::string>>(
                                 kSkipEagerDeletionVars) /*skip_ref_cnt_vars*/);

  for (size_t step_id = 0; step_id < seq_len; ++step_id) {
    size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
    VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
    auto &cur_scope = scopes.CurScope();

    // Link outside::output_grads --> inside::output_grads
    //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
    LinkTensorWithCallback(
        scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
        [&](const framework::Tensor &outside, framework::Tensor *inside) {
          inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
          auto dims = framework::vectorize(inside->dims());
          dims.erase(dims.begin());
          inside->Resize(framework::make_ddim(dims));
        },
        true /*is_backward*/);
    auto og_set = List2Set(Inputs(kOutputGrads));

    if (VLOG_IS_ON(10)) {
      std::ostringstream sout;
      std::copy(og_set.begin(), og_set.end(),
                std::ostream_iterator<std::string>(sout, ","));
      VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
    }

    if (has_state) {
      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
337
          auto &ex_grad_tensor =
338 339 340 341
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
342
          framework::LoDTensor *cur_grad_tensor =
343
              cur_grad_var->GetMutable<framework::LoDTensor>();
344
          cur_grad_tensor->ShareDataWith(ex_grad_tensor);
Y
Yu Yang 已提交
345
        }
Y
Yan Chunwei 已提交
346
      }
347
    }
Y
Yu Yang 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    // Link inside::output -> outside::output
    //   outside::output[seq_offset: seq_offset + 1] = inside::output
    executor.CreateVariables(ctx->prog_, &cur_scope, ctx->block_id_);
    if (step_id > 0) {
      LinkTensorWithCallback(scope, Outputs(kInputGrads), cur_scope,
                             GradVarLists(Inputs(kInputs)),
                             [&](const framework::LoDTensor &src_tensor,
                                 framework::LoDTensor *dst_tensor) {
                               if (src_tensor.memory_size() ==
                                   0) {  // Inside Gradient is not created.
                                 return;
                               }
                               framework::Tensor src_slice =
                                   src_tensor.Slice(seq_offset, seq_offset + 1);
                               dst_tensor->ShareDataWith(src_slice);
                             },
                             true /*is_backward*/);
    }

368 369 370 371
    VLOG(5) << "Recurrent memory linking finished ";
    // Run step block with cur_scope
    executor.RunPreparedContext(ctx.get(), &cur_scope,
                                false /*create_local_scope*/,
372
                                false /*create_vars*/, true /* keep_kids */);
Y
Yu Yang 已提交
373

374
    VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
375

376
    auto local_var_names = LocalVarNames(cur_scope);
Y
Yu Yang 已提交
377

378 379 380 381 382 383 384 385
    // Accumulate params
    //   if (step == 0):
    //      outside::param_grad = 0.0
    //   outside::param_grad += inside::param_grad
    {
      auto &pg_names = Outputs(kParamGrads);
      auto &p_names = Inputs(kParameters);
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yu Yang 已提交
386

387 388
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
389

390 391 392 393 394
        // If does not compute gradient of that variable inside rnn, just
        // continue
        if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
          continue;
        }
Y
Yu Yang 已提交
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409
        // zero gradient variable in step 0
        if (step_id == 0) {
          auto &inside_tensor =
              cur_scope.FindVar(inside_grad_name)->Get<framework::LoDTensor>();
          framework::AttributeMap attrs;
          attrs["dtype"] = inside_tensor.type();
          attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
          attrs["value"] = 0.0f;

          auto zero_op = framework::OpRegistry::CreateOp(
              "fill_constant", framework::VariableNameMap{},
              {{"Out", {pg_names[param_id]}}}, attrs);
          zero_op->Run(scope, place);
        }
Y
Yu Yang 已提交
410

411
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
412

413 414 415 416 417 418
        // sum gradient
        auto sum_op = framework::OpRegistry::CreateOp(
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
        sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
419

420
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yan Chunwei 已提交
421
      }
422 423 424 425 426
    }
    VLOG(5) << "Accumulate Parameter finished ";

    // Copy input gradient from inside to outside
    //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
427 428 429 430 431 432 433 434 435
    if (step_id == 0) {
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            // Alloc outside memory
436 437 438
            outside->Resize(PrependDims(seq_len, inside.dims()));
            outside->mutable_data(place, inside.type());

439 440 441 442 443
            auto dst = outside->Slice(seq_offset, seq_offset + 1);
            framework::TensorCopy(inside, place, dev_ctx, &dst);
          },
          true /*is_backward*/);
    }
444 445 446 447 448 449 450 451 452 453 454
    VLOG(5) << "Link outside gradient finished ";

    if (has_state) {
      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
D
dzhwinter 已提交
455
              outside->mutable_data(place, inside.type());
456 457 458 459
              framework::TensorCopy(inside, place, dev_ctx, outside);
            },
            true /*is_backward*/);
        VLOG(5) << "Link initialize state gradient finished ";
Y
Yu Yang 已提交
460
      }
Y
Yan Chunwei 已提交
461
    }
462
    scopes.Next();
Y
Yan Chunwei 已提交
463
  }
464 465 466 467 468 469
  // Delete the scope of StepScopes
  auto *var = scope.FindVar(Input(kStepScopes));
  PADDLE_ENFORCE(var != nullptr);
  auto *step_scopes = var->GetMutable<StepScopeVar>();
  ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope), step_scopes);
}
Y
Yu Yang 已提交
470

471 472 473 474 475 476 477 478
StepScopes RecurrentGradOp::CreateStepScopes(
    const platform::DeviceContext &dev_ctx, const framework::Scope &scope,
    size_t seq_len) const {
  auto *var = scope.FindVar(Input(kStepScopes));
  PADDLE_ENFORCE(var != nullptr);
  return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
                    Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
}
Y
Yu Yang 已提交
479

480 481 482 483 484 485
std::unordered_set<std::string> RecurrentGradOp::List2Set(
    const std::vector<std::string> &list) const {
  std::unordered_set<std::string> local_var_name_set;
  local_var_name_set.reserve(list.size());
  for (auto &each : list) {
    local_var_name_set.insert(each);
Y
Yu Yang 已提交
486
  }
487 488
  return local_var_name_set;
}
Y
Yu Yang 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501
std::unordered_set<std::string> RecurrentGradOp::LocalVarNames(
    const framework::Scope &scope) const {
  return this->List2Set(scope.LocalVarNames());
}
std::vector<std::string> RecurrentGradOp::GradVarLists(
    const std::vector<std::string> &var_names) {
  std::vector<std::string> retv;
  retv.reserve(var_names.size());
  std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                 framework::GradVarName);
  return retv;
}
Y
Yu Yang 已提交
502 503

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
504
 public:
Y
Yu Yang 已提交
505
  void Make() override {
506 507 508 509
    AddInput(RecurrentBase::kInputs, "rnn inputs").AsDuplicable();
    AddInput(RecurrentBase::kInitialStates, "rnn initial states")
        .AsDuplicable();
    AddInput(RecurrentBase::kParameters,
Y
Yu Yang 已提交
510
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
511 512
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
513
        .AsDuplicable();
514
    AddOutput(RecurrentBase::kOutputs,
K
kexinzhao 已提交
515
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
516
        .AsDuplicable();
517
    AddOutput(RecurrentBase::kStepScopes,
K
kexinzhao 已提交
518
              "StepScopes contain all local variables in each time step.");
519 520 521 522 523 524
    AddAttr<bool>(RecurrentBase::kHasStates, "Whether has states.")
        .SetDefault(false);
    AddAttr<std::vector<std::string>>(
        RecurrentBase::kExStates,
        string::Sprintf(
            R"DOC(The ex-state variable names.
Y
Yu Yang 已提交
525 526
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
527 528
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
Y
Yu Yang 已提交
529
    AddAttr<std::vector<std::string>>(
530
        RecurrentBase::kStates,
Y
Yu Yang 已提交
531 532
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
533 534 535 536 537
            RecurrentBase::kExStates, RecurrentBase::kStates,
            RecurrentBase::kInitStateGrads));
    AddAttr<framework::BlockDesc *>(RecurrentBase::kStepBlock,
                                    "The step block inside RNN");
    AddAttr<bool>(RecurrentBase::kReverse, R"DOC(Calculate RNN reversely or not.
Y
Yu Yang 已提交
538
By default reverse=False
Y
Yan Chunwei 已提交
539

Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
562 563 564 565 566 567
    AddAttr<bool>(RecurrentBase::kIsTrain, "").SetDefault(true);
    AddAttr<std::vector<std::string>>(RecurrentBase::kSkipEagerDeletionVars,
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());

K
kexinzhao 已提交
568 569 570 571 572
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
573 574 575 576 577 578 579 580

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
581

Y
Yu Yang 已提交
582
 protected:
Y
Yu Yang 已提交
583 584
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
585 586 587 588
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
589
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
590 591 592
    }

    for (auto &output_param : this->OutputNames()) {
593
      if (output_param == RecurrentBase::kStepScopes) {
Y
Yu Yang 已提交
594 595 596 597 598 599 600 601 602 603
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
604
    grad->SetBlockAttr(RecurrentBase::kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
605

Y
Yu Yang 已提交
606
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
607 608 609
  }
};

Y
Yu Yang 已提交
610 611 612
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
613
    std::vector<std::string> output{RecurrentBase::kOutputs};
C
chengduo 已提交
614 615 616

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
617
    if (!ctx->HasInputs(RecurrentBase::kInitialStates)) {
C
chengduo 已提交
618
      PADDLE_ENFORCE_EQ(
619 620 621 622
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kExStates)
              .size(),
          0, "The Attr(%s) should be empty.", RecurrentBase::kExStates);
C
chengduo 已提交
623
      PADDLE_ENFORCE_EQ(
624 625 626 627
          ctx->Attrs()
              .Get<std::vector<std::string>>(RecurrentBase::kStates)
              .size(),
          0, "The Attr(%s) should be empty.", RecurrentBase::kStates);
Y
Yu Yang 已提交
628
    }
C
chengduo 已提交
629

630 631 632 633 634 635
    PADDLE_ENFORCE(ctx->HasInputs(RecurrentBase::kInputs),
                   "The input(%s) should not be empty.",
                   RecurrentBase::kInputs);
    PADDLE_ENFORCE(ctx->HasInputs(RecurrentBase::kOutputs),
                   "The input(%s) should not be empty.",
                   RecurrentBase::kOutputs);
C
chengduo 已提交
636 637

    // In some case the kInitialStates is empty.
638 639 640
    if (ctx->HasInputs(RecurrentBase::kInitialStates)) {
      PADDLE_ENFORCE(ctx->HasOutputs(
                         framework::GradVarName(RecurrentBase::kInitialStates)),
C
chengduo 已提交
641
                     "The output of(%s) should not be empty.",
642 643 644
                     framework::GradVarName(RecurrentBase::kInitialStates));
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInitialStates),
                         ctx->GetInputsDim(RecurrentBase::kInitialStates));
Y
Yan Chunwei 已提交
645
    }
C
chengduo 已提交
646

647 648 649 650 651 652
    PADDLE_ENFORCE(
        ctx->HasOutputs(framework::GradVarName(RecurrentBase::kInputs)),
        "The output of(%s) should not be empty.",
        framework::GradVarName(RecurrentBase::kInputs));
    ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kInputs),
                       ctx->GetInputsDim(RecurrentBase::kInputs));
C
chengduo 已提交
653 654

    // In some case the kParameters is empty.
655 656 657 658 659 660 661
    if (ctx->HasInputs(RecurrentBase::kParameters)) {
      PADDLE_ENFORCE(
          ctx->HasOutputs(framework::GradVarName(RecurrentBase::kParameters)),
          "The output of(%s) should not be empty.",
          framework::GradVarName(RecurrentBase::kParameters));
      ctx->SetOutputsDim(framework::GradVarName(RecurrentBase::kParameters),
                         ctx->GetInputsDim(RecurrentBase::kParameters));
Y
Yu Yang 已提交
662 663 664
    }
  }
};
Y
Yan Chunwei 已提交
665 666 667 668

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
669 670 671 672 673
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);