fusion_lstm_op.cc 20.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40 41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");

T
tensor-tang 已提交
42 43
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
70 71
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
72 73
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75 76 77 78 79 80 81
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
82 83 84 85 86 87
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
88

T
tensor-tang 已提交
89
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
92 93
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
94
  int xx_width;
T
tensor-tang 已提交
95
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
96 97 98
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                   "Output(BatchedInput) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                   "Output(BatchedHidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                   "Output(BatchedCell) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                   "Output(ReorderedH0) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                   "Output(ReorderedC0) of LSTM should not be null.");
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
112
  }
T
tensor-tang 已提交
113 114
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
115 116 117 118 119
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
120
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
121 122 123 124
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
125
  AddInput("X",
T
tensor-tang 已提交
126
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
127
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
128 129 130 131 132 133 134 135 136
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
137 138 139
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
140 141
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
142 143 144 145 146 147 148 149
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
150 151 152 153 154 155 156 157 158 159 160 161
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
162
  AddOutput("Hidden",
T
tensor-tang 已提交
163
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
164 165
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
166
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
167
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
168
  AddOutput("XX",
T
tensor-tang 已提交
169 170 171
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
172 173
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
174 175 176 177 178
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
179 180 181 182 183 184 185 186
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
187 188 189 190
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
209 210
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
211 212 213
)DOC");
}

T
tensor-tang 已提交
214
template <typename T>
T
tensor-tang 已提交
215
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
216
 public:
T
tensor-tang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
255 256
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
257 258 259
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
260

T
tensor-tang 已提交
261
    auto x_lod = x->lod();
T
tensor-tang 已提交
262
    const int total_T = x_dims[0];
T
tensor-tang 已提交
263
    const int N = x_lod[0].size() - 1;  // batch size
T
tensor-tang 已提交
264 265

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
266 267
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
268
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
269
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
270
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
271 272
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
273 274

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
275
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
276
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
293 294

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
295 296
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
297 298
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
T
tensor-tang 已提交
299 300
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
301 302
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
303 304
      } else {
        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
305 306
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
307 308 309
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
310
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
311 312 313
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
314 315
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
316 317
        tstart = 1;

T
tensor-tang 已提交
318
        move_step();
T
tensor-tang 已提交
319 320 321
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
322
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
323 324

        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
325 326
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
327 328

        // a = forget * prev_cell
T
tensor-tang 已提交
329
        blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2);
T
tensor-tang 已提交
330 331 332 333 334 335 336 337

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
338
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
339 340 341
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
342 343
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
344

T
tensor-tang 已提交
345
        move_step();
T
tensor-tang 已提交
346 347
      }
    }
T
tensor-tang 已提交
348 349 350 351
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
352
    INIT_BASE_INPUT_OUTPUT
T
tensor-tang 已提交
353
    if (x->lod()[0].size() == 2) {
T
tensor-tang 已提交
354
      SeqCompute(ctx);
T
tensor-tang 已提交
355
      return;
T
tensor-tang 已提交
356 357 358 359
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
360 361 362 363 364
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
365

T
tensor-tang 已提交
366 367
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
368 369 370 371 372 373 374 375
    const T* wh_data = wh->data<T>();
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
376

T
tensor-tang 已提交
377
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
378 379
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
380 381 382 383
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
384 385
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
386 387 388
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
389
                                        bias->data<T>());
T
tensor-tang 已提交
390 391
    }

T
tensor-tang 已提交
392 393 394 395 396 397 398
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
399 400
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      // W_ch, W_ih, W_fh, W_oh
      for (int i = 0; i < max_bs; ++i) {
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // cell out= input*tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        // add offset
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
439
    }
T
tensor-tang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    // Then start from next
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
                prev_h_data, D, wh_data, D4, static_cast<T>(1),
                batched_input_data, D4);

      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D3, cur_in_data + D, cur_in_data + D);
        act_cand(D, cur_in_data, cur_in_data);
        // a = forget * prev_cell
        blas.VMUL(D, cur_in_data + D2, cur_prev_c_data, cur_in_data + D2);
        // b = input * tilde
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
        // cell out= a+b
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
475 476
      }

T
tensor-tang 已提交
477 478 479 480 481
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
482 483 484
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
485 486 487 488
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
489
  }
T
tensor-tang 已提交
490

T
tensor-tang 已提交
491
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
492
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
493 494 495 496 497
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
498 499 500
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
501 502 503 504 505 506
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
507
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
508 509
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
510 511
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);