initializer.py 41.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26

27
__all__ = [
28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
31
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
32
]
33

34 35 36
_global_weight_initializer_ = None
_global_bias_initializer_ = None

37 38 39 40 41 42 43 44 45 46

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
47
    def __init__(self):
48 49
        pass

50
    def __call__(self, param, block=None):
51 52 53 54
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

55 56
    def _check_block(self, block):
        if block is None:
57
            block = default_main_program().global_block()
58 59 60

        return block

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

96 97 98

class ConstantInitializer(Initializer):
    """Implements the constant initializer
99 100

    Args:
D
Double_V 已提交
101
        value (float32): constant value to initialize the variable 
102 103 104 105

    Examples:
        .. code-block:: python

106 107 108
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112 113
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
114

115 116
    """

117
    def __init__(self, value=0.0, force_cpu=False):
118 119 120
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
121
        self._force_cpu = force_cpu
122

123 124
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
125 126

        Args:
127 128 129
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
130 131

        Returns:
132
            The initialization op
133
        """
134 135
        block = self._check_block(block)

136 137
        assert (isinstance(var, framework.Variable) or
                isinstance(var, framework.EagerParamBase))
138
        assert isinstance(block, framework.Block)
139

J
Jiabin Yang 已提交
140
        if framework._non_static_mode():
141 142 143 144 145
            _C_ops.fill_constant(var, 'value',
                                 float(self._value), 'force_cpu',
                                 self._force_cpu, 'dtype',
                                 int(var.dtype), 'str_value',
                                 str(float(self._value)), 'shape', var.shape)
146 147 148 149 150
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
            op = block.append_op(
                type="fill_constant",
151
                outputs={"Out": var},
152 153
                attrs={
                    "shape": var.shape,
154
                    "dtype": int(var.dtype),
155 156 157 158 159
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu
                },
                stop_gradient=True)
160

161
            var.op = op
162
            return op
163 164 165


class UniformInitializer(Initializer):
166
    """Implements the random uniform distribution initializer
167 168 169 170 171

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
172 173 174 175 176 177
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
178 179 180 181

    Examples:
        .. code-block:: python

X
xiaoting 已提交
182
            import paddle.fluid as fluid
183
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
184
            fc = fluid.layers.fc(input=x, size=10,
185
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
186 187
    """

188 189 190 191 192 193 194
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
195 196
        assert low is not None
        assert high is not None
197
        assert high >= low
198
        assert seed is not None
199 200 201 202 203
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
204 205 206 207
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
208 209 210
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
211

212 213
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
214 215

        Args:
216 217 218
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
219 220

        Returns:
221
            The initialization op
222
        """
223 224
        block = self._check_block(block)

225
        assert isinstance(block, framework.Block)
226 227
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
228 229
                                 "uniform_random")

D
dzhwinter 已提交
230 231
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
232

X
polish  
Xin Pan 已提交
233
        # to be compatible of fp16 initializers
234
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
235 236
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
237 238
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
239 240 241 242 243 244 245 246
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
247
        if framework._non_static_mode():
248 249 250 251 252 253 254
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
255
                var_tmp._share_underline_tensor_to(var)
256
            else:
257
                out_var._share_underline_tensor_to(var)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            return None
        else:
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val
                },
                stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
W
Wu Yi 已提交
283

284
            var.op = op
285
            return op
286 287 288


class NormalInitializer(Initializer):
289 290 291 292 293 294 295 296 297 298
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
299
            import paddle.fluid as fluid
300
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
301 302
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
303

304 305 306 307 308 309 310 311 312 313 314
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

315 316
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
317 318

        Args:
319 320 321
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
322 323

        Returns:
324
            The initialization op
325
        """
326 327
        block = self._check_block(block)

328
        assert isinstance(block, framework.Block)
329

330 331
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
332
                                 "guassian_random")
333

D
dzhwinter 已提交
334 335
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
336

J
Jiabin Yang 已提交
337
        if framework._non_static_mode():
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            out_var = _C_ops.gaussian_random(
                'shape', var.shape, 'dtype', var.dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
            out_var._share_underline_tensor_to(var)
            return None
        else:
            op = block.append_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                    "use_mkldnn": False
                },
                stop_gradient=True)

357
            var.op = op
358
            return op
359 360


361 362 363 364 365 366 367 368 369 370 371
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
372
            import paddle.fluid as fluid
373
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
374 375 376 377 378 379 380 381
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
382
        super(TruncatedNormalInitializer, self).__init__()
383 384 385 386
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

387 388
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
389 390

        Args:
391 392 393
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
394 395

        Returns:
396
            The initialization op
397
        """
398 399
        block = self._check_block(block)

400 401
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
402

403 404
        if self._seed == 0:
            self._seed = block.program.random_seed
405 406

        # to be compatible of fp16 initalizers
407
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
408 409 410
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
411
                    ['truncated_gaussian_random', var.name, 'tmp'])),
412 413 414 415 416 417 418 419
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

420 421 422 423 424 425 426 427 428 429 430 431
        if in_dygraph_mode():
            out_var = _C_ops.final_state_truncated_gaussian_random(
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.final_state_cast(out_var, var.dtype)
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
432 433 434 435 436 437
            out_var = _C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
438
                var_tmp._share_underline_tensor_to(var)
439
            else:
440
                out_var._share_underline_tensor_to(var)
441 442 443 444 445 446 447 448 449 450 451 452 453
            return None
        else:
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed
                },
                stop_gradient=True)
454

455 456 457 458 459 460 461
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
462
            var.op = op
463
            return op
464 465


466
class XavierInitializer(Initializer):
467
    r"""
468
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
469 470 471
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
472 473 474

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
475 476 477 478 479 480
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

481
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
482
    is
483

Q
qiaolongfei 已提交
484
    .. math::
485

Q
qiaolongfei 已提交
486
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
487 488


Q
qiaolongfei 已提交
489
    Args:
X
xiaoting 已提交
490 491
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
492
                inferred from the variable.
X
xiaoting 已提交
493
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
494 495 496 497 498 499 500 501 502
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
503
            import paddle.fluid as fluid
X
xiaoting 已提交
504
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
505 506 507 508 509 510 511
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
512 513 514 515 516 517 518 519
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

520 521
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
522 523

        Args:
524 525 526
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
527 528

        Returns:
529
            The initialization op
530
        """
531 532
        block = self._check_block(block)

533
        assert isinstance(block, framework.Block)
534 535
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
536 537
                                 "xavier_init")

538 539 540 541 542 543
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
544 545 546
        if self._seed == 0:
            self._seed = block.program.random_seed

547
        # to be compatible of fp16 initalizers
548 549
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
550 551 552 553 554 555 556 557 558 559 560 561
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
562
        if framework._non_static_mode():
563 564
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
565
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
566 567 568 569 570 571 572 573 574 575 576 577
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype', out_dtype)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                    'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
578
                var_tmp._share_underline_tensor_to(var)
579
            else:
580
                out_var._share_underline_tensor_to(var)
581
            return None
582
        else:
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
619

620
            var.op = op
621
            return op
622 623 624


class MSRAInitializer(Initializer):
625
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
626 627

    This class implements the weight initialization from the paper
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
647 648 649
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
650 651 652 653 654 655

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
656

657
            import paddle
X
xsrobin 已提交
658
            import paddle.fluid as fluid
659
            paddle.enable_static()
D
Double_V 已提交
660
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
661 662
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
663

664 665 666 667 668 669 670 671 672 673 674 675
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

676 677
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
678 679

        Args:
680 681 682
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
683 684

        Returns:
685
            The initialization op
686
        """
687 688
        block = self._check_block(block)

689 690 691 692 693 694 695
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
696 697 698
        if self._seed == 0:
            self._seed = block.program.random_seed

699
        # to be compatible of fp16 initalizers
700 701
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
702 703 704 705 706 707 708 709 710 711 712 713
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
714
        if framework._non_static_mode():
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
                std = np.sqrt(2.0 / float(fan_in))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype',
                    int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
731
                var_tmp._share_underline_tensor_to(var)
732
            else:
733
                out_var._share_underline_tensor_to(var)
734
            return None
735
        else:
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            else:
                std = np.sqrt(2.0 / float(fan_in))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
773

774
            var.op = op
775
            return op
776 777


778
class BilinearInitializer(Initializer):
779
    """
780 781 782
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
783 784 785 786 787

    Examples:

        .. code-block:: python

788
            import math
789 790 791 792 793

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
794 795
            factor = 2
            C = 2
D
Double_V 已提交
796 797
            B = 8
            H = W = 32
798 799 800 801
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
802
            conv_up = nn.Conv2DTranspose(3,
803 804 805 806 807 808 809 810 811 812 813
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
814 815 816 817
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
818 819
    interpolation unchanged during training.

820 821 822 823 824 825 826
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

827 828
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
829 830

        Args:
831 832 833
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
834 835

        Returns:
836
            The initialization op
837
        """
838 839
        block = self._check_block(block)

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

864
        # to be compatible of fp16 initalizers
865 866 867
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
868 869 870 871 872 873 874 875 876 877 878 879 880
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
881 882 883
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
884 885
            raise TypeError("Unsupported dtype %s", var.dtype)

886 887
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
888

J
Jiabin Yang 已提交
889
        if framework._non_static_mode():
W
wanghuancoder 已提交
890 891 892
            _C_ops.assign_value(out_var, 'shape',
                                list(shape), 'dtype', out_dtype, value_name,
                                values)
893 894 895 896 897 898
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
899
                var_tmp._share_underline_tensor_to(var)
900
            else:
901
                out_var._share_underline_tensor_to(var)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values
                })

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

924
            var.op = op
925
            return op
926 927


928 929
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
930
    This op initialize the variable by numpy array.
931 932 933 934

    Args:
        value (numpy): numpy array to initialize the variable

935 936 937
    Returns:
        A Tensor variable initialized by numpy.

938 939 940
    Examples:
        .. code-block:: python

941
            import paddle.fluid as fluid
942 943
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
944 945 946 947 948 949 950 951 952 953
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

954 955
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
956 957

        Args:
958 959 960
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
961 962

        Returns:
963
            The initialization op
964
        """
965 966
        block = self._check_block(block)

967 968
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
969 970

        # to be compatible of fp16 initalizers
971
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
987
            value_name = "fp32_values"
988 989
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
990
            value_name = "int32_values"
991
            values = [int(v) for v in np_value.flat]
992 993
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
994
        if self._value.size > 1024 * 1024 * 1024:
995 996
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
997

J
Jiabin Yang 已提交
998
        if framework._non_static_mode():
W
wanghuancoder 已提交
999 1000 1001
            _C_ops.assign_value(out_var, 'shape',
                                list(self._value.shape), 'dtype', out_dtype,
                                value_name, values)
1002 1003 1004
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
1005
                var_tmp._share_underline_tensor_to(var)
1006
            else:
1007
                out_var._share_underline_tensor_to(var)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values
                },
                stop_gradient=True)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

1028
            var.op = op
1029
            return op
1030 1031


1032 1033 1034 1035 1036 1037 1038
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1039
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1059 1060 1061 1062 1063
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1064 1065 1066

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1067 1068
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1069 1070 1071 1072

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1073 1074 1075 1076
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1077 1078

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1079
            nn.initializer.set_global_initializer(None)
1080
    """
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1107 1108
def calculate_gain(nonlinearity, param=None):
    """
1109 1110
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1111 1112

    Args:
1113 1114
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1115
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1116
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1117 1118

    Returns:
1119
        A float value, which is the recommended gain for this nonlinearity function.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1140 1141 1142
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1167
TruncatedNormal = TruncatedNormalInitializer
1168 1169
Xavier = XavierInitializer
MSRA = MSRAInitializer
1170
Bilinear = BilinearInitializer