Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
86092a97
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
86092a97
编写于
6月 18, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add doc for XavierInitializer
上级
69d568bd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
36 addition
and
25 deletion
+36
-25
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+36
-25
未找到文件。
python/paddle/fluid/initializer.py
浏览文件 @
86092a97
...
...
@@ -21,7 +21,8 @@ from core import VarDesc
__all__
=
[
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'Bilinear'
,
'force_init_on_cpu'
,
'init_on_cpu'
,
'ConstantInitializer'
,
'UniformInitializer'
,
'NormalInitializer'
,
'XavierInitializer'
,
'BilinearInitializer'
'NormalInitializer'
,
'XavierInitializer'
,
'BilinearInitializer'
,
'MSRAInitializer'
]
_force_init_on_cpu_
=
False
...
...
@@ -246,39 +247,49 @@ class NormalInitializer(Initializer):
class
XavierInitializer
(
Initializer
):
"""Implements the Xavier initializer
"""
This class implements the Xavier weight initializer from the paper
Understanding the difficulty of training deep feedforward neural
networks[1] by Xavier Glorot and Yoshua Bengio.
`Understanding the difficulty of training deep feedforward neural
networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
by Xavier Glorot and Yoshua Bengio.
This initializer is designed to keep the scale of the gradients
approximately same in all the layers. In case of Uniform distribution,
the range is [-x, x], where x = sqrt(6 / (fan_in + fan_out)).
the range is [-x, x], where
.. math::
x = \sqrt{
\\
frac{6.0}{fan\_in + fan\_out}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
sqrt(2/ (fan_in + fan_out)).
is
References:
[1] Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and
statistics.
(http://proceedings.mlr.press/v9/glorot10a.html)
"""
.. math::
def
__init__
(
self
,
uniform
=
True
,
fan_in
=
None
,
fan_out
=
None
,
seed
=
0
):
"""Constructor for XavierInitializer
\sqrt{
\\
frac{2.0}{fan\_in + fan\_out}}
Args:
uniform: whether to use uniform or normal distribution
fan_in: fan_in for Xavier initialization. If None, it is
inferred from the variable.
fan_out: fan_out for Xavier initialization. If None, it is
inferred from the variable.
seed: random seed
Note: It is recommended to set fan_in and fan_out to None for
most cases.
"""
Args:
uniform (bool): whether to use uniform or normal distribution
fan_in (float): fan_in for Xavier initialization. If None, it is
inferred from the variable.
fan_out (float): fan_out for Xavier initialization. If None, it is
inferred from the variable.
seed (int): random seed
Note:
It is recommended to set fan_in and fan_out to None for most cases.
Examples:
.. code-block:: python
fc = fluid.layers.fc(
input=queries, size=10,
param_attr=fluid.initializer.Xavier(uniform=False))
"""
def
__init__
(
self
,
uniform
=
True
,
fan_in
=
None
,
fan_out
=
None
,
seed
=
0
):
assert
uniform
is
not
None
assert
seed
is
not
None
super
(
XavierInitializer
,
self
).
__init__
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录