initializer.py 17.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import framework
16
import numpy as np
17
import contextlib
18 19
from framework import convert_np_dtype_to_dtype_
from core import VarDesc
20

21
__all__ = [
22
    'Constant', 'Uniform', 'Normal', 'Xavier', 'Bilinear', 'force_init_on_cpu',
_青葱's avatar
Adjust  
_青葱 已提交
23
    'init_on_cpu', 'ConstantInitializer', 'UniformInitializer',
Q
qiaolongfei 已提交
24 25
    'NormalInitializer', 'XavierInitializer', 'BilinearInitializer',
    'MSRAInitializer'
26
]
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
_force_init_on_cpu_ = False


def force_init_on_cpu():
    return _force_init_on_cpu_


@contextlib.contextmanager
def init_on_cpu():
    """
    Switch program with `with` statement

    Examples:
        >>> with init_on_cpu():
        >>>   step = layers.create_global_var()

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

    def __init_(self):
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

105 106 107 108 109

class ConstantInitializer(Initializer):
    """Implements the constant initializer
    """

110
    def __init__(self, value=0.0, force_cpu=False):
111 112 113 114 115 116 117 118
        """Constructor for ConstantInitializer

        Args:
            value: constant value to initialize the variable
        """
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
119
        self._force_cpu = force_cpu
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        op = block.prepend_op(
            type="fill_constant",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
140
                "dtype": int(var.dtype),
141 142
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
143 144 145 146 147 148
            })
        var.op = op
        return op


class UniformInitializer(Initializer):
149
    """Implements the random uniform distribution initializer
150 151 152 153 154 155 156 157 158 159 160 161
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        """Constructor for UniformInitializer

        Args:
            low: lower boundary of the uniform distribution
            high: upper boundary of the uniform distribution
            seed: random seed
        """
        assert low is not None
        assert high is not None
162
        assert high >= low
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
183 184
        if self._seed == 0:
            self._seed = block.program.random_seed
185 186 187 188 189
        op = block.prepend_op(
            type="uniform_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
190
                "dtype": int(var.dtype),
191 192 193 194 195 196
                "min": self._low,
                "max": self._high,
                "seed": self._seed
            })
        var.op = op
        return op
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232


class NormalInitializer(Initializer):
    """Implements the  random Normal(Gaussian) distribution initializer
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        """Constructor for NormalInitializer

        Args:
            loc: mean of the normal distribution
            scale: standard deviation of the normal distribution
            seed: random seed
        """
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
233 234
        if self._seed == 0:
            self._seed = block.program.random_seed
235 236 237 238 239
        op = block.prepend_op(
            type="gaussian_random",
            outputs={"Out": var},
            attrs={
                "shape": var.shape,
F
fengjiayi 已提交
240
                "dtype": int(var.dtype),
241 242 243 244 245 246
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
            })
        var.op = op
        return op
247 248 249


class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
250
    """
251
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
252 253 254
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
255 256 257

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
258 259 260 261 262 263
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

264
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
265
    is
266

Q
qiaolongfei 已提交
267
    .. math::
268

Q
qiaolongfei 已提交
269
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
270 271


Q
qiaolongfei 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
320 321 322
        if self._seed == 0:
            self._seed = block.program.random_seed

323 324 325 326 327 328 329
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
            op = block.prepend_op(
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
330
                    "dtype": int(var.dtype),
331 332 333 334 335 336 337 338 339 340 341 342
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
                })

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
            op = block.prepend_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
343
                    "dtype": int(var.dtype),
344 345 346 347 348 349
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
                })
        var.op = op
        return op
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
    Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification[1] by Kaiming He, Xiangyu Zhang, Shaoqing Ren
    and Jian Sun. This is a robust initialization method that particularly
    considers the rectifier nonlinearities. In case of Uniform distribution,
    the range is [-x, x], where x = sqrt(6 / fan_in). In case of Normal
    distribution, the mean is 0 and the standard deviation
    is sqrt(2/ fan_in).

    References:
        [1] Delving Deep into Rectifiers: Surpassing Human-Level Performance
            on ImageNet Classification
            (https://arxiv.org/abs/1502.01852)
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer

        Args:
            uniform: whether to use uniform or normal distribution
            fan_in: fan_in for MSRAInitializer. If None, it is
                    inferred from the variable.
            seed: random seed

        Note: It is recommended to set fan_in to None for most cases.
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
406 407 408
        if self._seed == 0:
            self._seed = block.program.random_seed

409 410 411 412 413 414 415
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
            op = block.prepend_op(
                type="uniform_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
416
                    "dtype": int(var.dtype),
417 418 419 420 421 422 423 424 425 426 427 428
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
                })

        else:
            std = np.sqrt(2.0 / float(fan_in))
            op = block.prepend_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
F
fengjiayi 已提交
429
                    "dtype": int(var.dtype),
430 431 432 433 434 435
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
                })
        var.op = op
        return op
436 437


438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
class BilinearInitializer(Initializer):
    """Implements the bilinear initializer.

    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
  
    >>>  factor = 2
    >>>  w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
    >>>                     initializer=Bilinear())
    >>>  conv_up = fluid.layers.conv2d_transpose(
    >>>      input,
    >>>      num_filters=C,
    >>>      output_size=None,
    >>>      filter_size=2 * factor - factor % 2,
    >>>      padding=ceil((factor - 1) / 2.),
    >>>      stride=factor,
    >>>      groups=C,
    >>>      param_attr=w_attr,
    >>>      bias_attr=False)


    Where, `num_filters=C` and `groups=C` means this is channel-wise tranposed
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
    interpolation unchanged during training. 
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
            the initialization op

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

        if var.dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
            outputs={'Out': [var]},
            attrs={
                'dtype': var.dtype,
                'shape': list(shape),
                value_name: values
            })
        var.op = op
        return op


533 534 535 536 537 538 539 540 541 542 543 544 545 546
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
Xavier = XavierInitializer
MSRA = MSRAInitializer
547
Bilinear = BilinearInitializer