initializer.py 35.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62
    def _check_block(self, block):
        if block is None:
            if in_dygraph_mode():
                block = default_main_program().global_block()
            else:
                raise ValueError(
                    "The parameter 'block' is needed in static graph mode.")

        return block

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

98 99 100

class ConstantInitializer(Initializer):
    """Implements the constant initializer
101 102

    Args:
D
Double_V 已提交
103
        value (float32): constant value to initialize the variable 
104 105 106 107

    Examples:
        .. code-block:: python

108 109 110
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
111
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
112 113 114 115
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
116

117 118
    """

119
    def __init__(self, value=0.0, force_cpu=False):
120 121 122
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
123
        self._force_cpu = force_cpu
124

125 126
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
127 128

        Args:
129 130 131
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
132 133

        Returns:
134
            The initialization op
135
        """
136 137
        block = self._check_block(block)

138 139
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

155
        # fill constant should set the "str_value" to preserve precision
156
        op = block.append_op(
157
            type="fill_constant",
158
            outputs={"Out": out_var},
159 160
            attrs={
                "shape": var.shape,
161
                "dtype": int(out_dtype),
162
                "value": float(self._value),
163
                'str_value': str(float(self._value)),
164
                'force_cpu': self._force_cpu
M
minqiyang 已提交
165 166
            },
            stop_gradient=True)
167 168 169 170 171 172 173 174 175

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
176
        if not framework.in_dygraph_mode():
177
            var.op = op
178 179 180 181
        return op


class UniformInitializer(Initializer):
182
    """Implements the random uniform distribution initializer
183 184 185 186 187

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
188 189 190 191 192 193
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
194 195 196 197

    Examples:
        .. code-block:: python

X
xiaoting 已提交
198
            import paddle.fluid as fluid
199
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
200
            fc = fluid.layers.fc(input=x, size=10,
201
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
202 203
    """

204 205 206 207 208 209 210
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
211 212
        assert low is not None
        assert high is not None
213
        assert high >= low
214
        assert seed is not None
215 216 217 218 219
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
220 221 222 223
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
224 225 226
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
227

228 229
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
230 231

        Args:
232 233 234
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
235 236

        Returns:
237
            The initialization op
238
        """
239 240
        block = self._check_block(block)

241
        assert isinstance(block, framework.Block)
242 243
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
244 245
                                 "uniform_random")

D
dzhwinter 已提交
246 247
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
248

X
polish  
Xin Pan 已提交
249
        # to be compatible of fp16 initializers
250
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
251 252
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
253 254
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
255 256 257 258 259 260 261 262
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

263
        op = block.append_op(
264
            type="uniform_random",
265
            inputs={},
W
Wu Yi 已提交
266
            outputs={"Out": out_var},
267 268
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
269
                "dtype": out_dtype,
270 271
                "min": self._low,
                "max": self._high,
272 273 274 275
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
276 277
            },
            stop_gradient=True)
W
Wu Yi 已提交
278

279
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
280 281 282 283 284 285 286
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
287
        if not framework.in_dygraph_mode():
288
            var.op = op
289
        return op
290 291 292


class NormalInitializer(Initializer):
293 294 295 296 297 298 299 300 301 302
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
303
            import paddle.fluid as fluid
304
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
305 306
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
307

308 309 310 311 312 313 314 315 316 317 318
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

319 320
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
321 322

        Args:
323 324 325
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
326 327

        Returns:
328
            The initialization op
329
        """
330 331
        block = self._check_block(block)

332
        assert isinstance(block, framework.Block)
333

334 335
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
336
                                 "guassian_random")
337

D
dzhwinter 已提交
338 339
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
340 341

        # to be compatible of fp16 initalizers
342
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
343 344
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
345 346
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
347 348 349 350 351 352 353 354
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

355
        op = block.append_op(
356
            type="gaussian_random",
W
Wu Yi 已提交
357
            outputs={"Out": out_var},
358 359
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
360
                "dtype": out_dtype,
361 362
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
363 364
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
365 366
            },
            stop_gradient=True)
W
Wu Yi 已提交
367

368
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
369 370 371 372 373 374
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
375
        if not framework.in_dygraph_mode():
376
            var.op = op
377
        return op
378 379


380 381 382 383 384 385 386 387 388 389 390
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
391
            import paddle.fluid as fluid
392
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
393 394 395 396 397 398 399 400
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
401
        super(TruncatedNormalInitializer, self).__init__()
402 403 404 405
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

406 407
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
408 409

        Args:
410 411 412
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
413 414

        Returns:
415
            The initialization op
416
        """
417 418
        block = self._check_block(block)

419 420
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
421

422 423
        if self._seed == 0:
            self._seed = block.program.random_seed
424 425

        # to be compatible of fp16 initalizers
426
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
427 428 429
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
430
                    ['truncated_gaussian_random', var.name, 'tmp'])),
431 432 433 434 435 436 437 438
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

439
        op = block.append_op(
440
            type="truncated_gaussian_random",
441
            outputs={"Out": out_var},
442 443
            attrs={
                "shape": var.shape,
444
                "dtype": out_dtype,
445 446 447
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
448 449
            },
            stop_gradient=True)
450

451
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
452 453 454 455 456 457
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
458
        if not framework.in_dygraph_mode():
459
            var.op = op
460 461 462
        return op


463
class XavierInitializer(Initializer):
464
    r"""
465
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
466 467 468
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
469 470 471

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
472 473 474 475 476 477
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

478
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
479
    is
480

Q
qiaolongfei 已提交
481
    .. math::
482

Q
qiaolongfei 已提交
483
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
484 485


Q
qiaolongfei 已提交
486
    Args:
X
xiaoting 已提交
487 488
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
489
                inferred from the variable.
X
xiaoting 已提交
490
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
491 492 493 494 495 496 497 498 499
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
500
            import paddle.fluid as fluid
X
xiaoting 已提交
501
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
502 503 504 505 506 507 508
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
509 510 511 512 513 514 515 516
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

517 518
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
519 520

        Args:
521 522 523
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
524 525

        Returns:
526
            The initialization op
527
        """
528 529
        block = self._check_block(block)

530
        assert isinstance(block, framework.Block)
531 532
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
533 534
                                 "xavier_init")

535 536 537 538 539 540
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
541 542 543
        if self._seed == 0:
            self._seed = block.program.random_seed

544
        # to be compatible of fp16 initalizers
545 546
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
547 548 549 550 551 552 553 554 555 556 557 558
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

559 560
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
561
            op = block.append_op(
562
                type="uniform_random",
563
                inputs={},
564
                outputs={"Out": out_var},
565
                attrs={
566 567
                    "shape": out_var.shape,
                    "dtype": out_dtype,
568 569 570
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
571 572
                },
                stop_gradient=True)
573 574 575

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
576
            op = block.append_op(
577
                type="gaussian_random",
578
                outputs={"Out": out_var},
579
                attrs={
580 581
                    "shape": out_var.shape,
                    "dtype": out_dtype,
582 583 584
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
585 586
                },
                stop_gradient=True)
587

588 589
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
590 591 592 593 594 595 596
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
597
        if not framework.in_dygraph_mode():
598
            var.op = op
599
        return op
600 601 602


class MSRAInitializer(Initializer):
603
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
604 605

    This class implements the weight initialization from the paper
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
625 626 627
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
628 629 630 631 632 633

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
634

635
            import paddle
X
xsrobin 已提交
636
            import paddle.fluid as fluid
637
            paddle.enable_static()
D
Double_V 已提交
638
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
639 640
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
641

642 643 644 645 646 647 648 649 650 651 652 653
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

654 655
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
656 657

        Args:
658 659 660
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
661 662

        Returns:
663
            The initialization op
664
        """
665 666
        block = self._check_block(block)

667 668 669 670 671 672 673
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
674 675 676
        if self._seed == 0:
            self._seed = block.program.random_seed

677
        # to be compatible of fp16 initalizers
678 679
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
680 681 682 683 684 685 686 687 688 689 690 691
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

692 693
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
694
            op = block.append_op(
695
                type="uniform_random",
696
                inputs={},
697
                outputs={"Out": out_var},
698
                attrs={
699 700
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
701 702 703
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
704 705
                },
                stop_gradient=True)
706 707 708

        else:
            std = np.sqrt(2.0 / float(fan_in))
709
            op = block.append_op(
710
                type="gaussian_random",
711
                outputs={"Out": out_var},
712
                attrs={
713 714
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
715 716 717
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
718 719
                },
                stop_gradient=True)
720

721 722
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
723 724 725 726 727 728 729
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
730
        if not framework.in_dygraph_mode():
731
            var.op = op
732
        return op
733 734


735
class BilinearInitializer(Initializer):
736
    """
737 738 739
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
740 741 742 743 744

    Examples:

        .. code-block:: python

745
            import math
746 747 748 749 750

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
751 752
            factor = 2
            C = 2
D
Double_V 已提交
753 754
            B = 8
            H = W = 32
755 756 757 758
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
759
            conv_up = nn.Conv2DTranspose(3,
760 761 762 763 764 765 766 767 768 769 770
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
771 772 773 774
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
775 776
    interpolation unchanged during training.

777 778 779 780 781 782 783
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

784 785
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
786 787

        Args:
788 789 790
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
791 792

        Returns:
793
            The initialization op
794
        """
795 796
        block = self._check_block(block)

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

821
        # to be compatible of fp16 initalizers
822 823 824
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
825 826 827 828 829 830 831 832 833 834 835 836 837
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
838 839 840
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
841 842
            raise TypeError("Unsupported dtype %s", var.dtype)

843 844 845 846
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
847
            outputs={'Out': [out_var]},
848
            attrs={
849
                'dtype': out_dtype,
850 851 852
                'shape': list(shape),
                value_name: values
            })
853

854 855 856
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
857 858 859 860 861 862 863
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
864
        if not framework.in_dygraph_mode():
865
            var.op = op
866 867 868
        return op


869 870
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
871
    This op initialize the variable by numpy array.
872 873 874 875

    Args:
        value (numpy): numpy array to initialize the variable

876 877 878
    Returns:
        A Tensor variable initialized by numpy.

879 880 881
    Examples:
        .. code-block:: python

882
            import paddle.fluid as fluid
883 884
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
885 886 887 888 889 890 891 892 893 894
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

895 896
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
897 898

        Args:
899 900 901
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
902 903

        Returns:
904
            The initialization op
905
        """
906 907
        block = self._check_block(block)

908 909
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
910 911

        # to be compatible of fp16 initalizers
912
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
928
            value_name = "fp32_values"
929 930
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
931
            value_name = "int32_values"
932
            values = [int(v) for v in np_value.flat]
933 934
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
935
        if self._value.size > 1024 * 1024 * 1024:
936 937
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
938
        op = block.append_op(
939
            type='assign_value',
940
            outputs={'Out': out_var},
941
            attrs={
942
                'dtype': out_dtype,
943
                'shape': list(self._value.shape),
944 945 946
                value_name: values
            },
            stop_gradient=True)
947

948
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
949 950 951 952 953 954 955
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
956
        if not framework.in_dygraph_mode():
957
            var.op = op
958 959 960
        return op


961 962 963 964 965 966 967
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
968
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

988 989 990 991 992
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
993 994 995

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
996 997
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
998 999 1000 1001

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1002 1003 1004 1005
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1006 1007

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1008
            nn.initializer.set_global_initializer(None)
1009
    """
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1048
TruncatedNormal = TruncatedNormalInitializer
1049 1050
Xavier = XavierInitializer
MSRA = MSRAInitializer
1051
Bilinear = BilinearInitializer