initializer.py 35.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62
    def _check_block(self, block):
        if block is None:
            if in_dygraph_mode():
                block = default_main_program().global_block()
            else:
                raise ValueError(
                    "The parameter 'block' is needed in static graph mode.")

        return block

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

98 99 100

class ConstantInitializer(Initializer):
    """Implements the constant initializer
101 102

    Args:
D
Double_V 已提交
103
        value (float32): constant value to initialize the variable 
104 105 106 107

    Examples:
        .. code-block:: python

108 109 110
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
111
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
112 113 114 115
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
116

117 118
    """

119
    def __init__(self, value=0.0, force_cpu=False):
120 121 122
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
123
        self._force_cpu = force_cpu
124

125 126
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
127 128

        Args:
129 130 131
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
132 133

        Returns:
134
            The initialization op
135
        """
136 137
        block = self._check_block(block)

138 139
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

155
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
156
        op = block._prepend_op(
157
            type="fill_constant",
158
            outputs={"Out": out_var},
159 160
            attrs={
                "shape": var.shape,
161
                "dtype": int(out_dtype),
162
                "value": float(self._value),
163
                'force_cpu': self._force_cpu
M
minqiyang 已提交
164 165
            },
            stop_gradient=True)
166 167 168 169 170 171 172 173 174

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
175
        if not framework.in_dygraph_mode():
176
            var.op = op
177 178 179 180
        return op


class UniformInitializer(Initializer):
181
    """Implements the random uniform distribution initializer
182 183 184 185 186

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
187 188 189 190 191 192
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
193 194 195 196

    Examples:
        .. code-block:: python

X
xiaoting 已提交
197
            import paddle.fluid as fluid
198
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
199
            fc = fluid.layers.fc(input=x, size=10,
200
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
201 202
    """

203 204 205 206 207 208 209
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
210 211
        assert low is not None
        assert high is not None
212
        assert high >= low
213
        assert seed is not None
214 215 216 217 218
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
219 220 221 222
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
223 224 225
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
226

227 228
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
229 230

        Args:
231 232 233
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
234 235

        Returns:
236
            The initialization op
237
        """
238 239
        block = self._check_block(block)

240
        assert isinstance(block, framework.Block)
241 242
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
243 244
                                 "uniform_random")

245
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
246 247
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
248

X
polish  
Xin Pan 已提交
249
        # to be compatible of fp16 initializers
250
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
251 252
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
253 254
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
255 256 257 258 259 260 261 262
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
263
        op = block._prepend_op(
264
            type="uniform_random",
265
            inputs={},
W
Wu Yi 已提交
266
            outputs={"Out": out_var},
267 268
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
269
                "dtype": out_dtype,
270 271
                "min": self._low,
                "max": self._high,
272 273 274 275
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
276 277
            },
            stop_gradient=True)
W
Wu Yi 已提交
278

279
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
280 281 282 283 284 285 286
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
287
        if not framework.in_dygraph_mode():
288
            var.op = op
289
        return op
290 291 292


class NormalInitializer(Initializer):
293 294 295 296 297 298 299 300 301 302
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
303
            import paddle.fluid as fluid
304
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
305 306
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
307

308 309 310 311 312 313 314 315 316 317 318
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

319 320
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
321 322

        Args:
323 324 325
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
326 327

        Returns:
328
            The initialization op
329
        """
330 331
        block = self._check_block(block)

332
        assert isinstance(block, framework.Block)
333

334 335
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
336
                                 "guassian_random")
337
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
338 339
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
340 341

        # to be compatible of fp16 initalizers
342
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
343 344
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
345 346
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
347 348 349 350 351 352 353 354
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
355
        op = block._prepend_op(
356
            type="gaussian_random",
W
Wu Yi 已提交
357
            outputs={"Out": out_var},
358 359
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
360
                "dtype": out_dtype,
361 362
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
363 364
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
365 366
            },
            stop_gradient=True)
W
Wu Yi 已提交
367

368
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
369 370 371 372 373 374
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
375
        if not framework.in_dygraph_mode():
376
            var.op = op
377
        return op
378 379


380 381 382 383 384 385 386 387 388 389 390
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
391
            import paddle.fluid as fluid
392
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
393 394 395 396 397 398 399 400
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
401
        super(TruncatedNormalInitializer, self).__init__()
402 403 404 405
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

406 407
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
408 409

        Args:
410 411 412
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
413 414

        Returns:
415
            The initialization op
416
        """
417 418
        block = self._check_block(block)

419 420 421 422 423
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
424 425

        # to be compatible of fp16 initalizers
426
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
427 428 429
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
430
                    ['truncated_gaussian_random', var.name, 'tmp'])),
431 432 433 434 435 436 437 438
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

439 440
        op = block._prepend_op(
            type="truncated_gaussian_random",
441
            outputs={"Out": out_var},
442 443
            attrs={
                "shape": var.shape,
444
                "dtype": out_dtype,
445 446 447
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
448 449
            },
            stop_gradient=True)
450

451
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
452 453 454 455 456 457
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
458
        if not framework.in_dygraph_mode():
459
            var.op = op
460 461 462
        return op


463
class XavierInitializer(Initializer):
464
    r"""
465
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
466 467 468
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
469 470 471

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
472 473 474 475 476 477
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

478
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
479
    is
480

Q
qiaolongfei 已提交
481
    .. math::
482

Q
qiaolongfei 已提交
483
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
484 485


Q
qiaolongfei 已提交
486
    Args:
X
xiaoting 已提交
487 488
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
489
                inferred from the variable.
X
xiaoting 已提交
490
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
491 492 493 494 495 496 497 498 499
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
500
            import paddle.fluid as fluid
X
xiaoting 已提交
501
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
502 503 504 505 506 507 508
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
509 510 511 512 513 514 515 516
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

517 518
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
519 520

        Args:
521 522 523
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
524 525

        Returns:
526
            The initialization op
527
        """
528 529
        block = self._check_block(block)

530
        assert isinstance(block, framework.Block)
531 532
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
533 534
                                 "xavier_init")

535 536 537 538 539 540
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
541 542 543
        if self._seed == 0:
            self._seed = block.program.random_seed

544
        # to be compatible of fp16 initalizers
545
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
546 547 548 549 550 551 552 553 554 555 556 557
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

558 559
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
560
            op = block._prepend_op(
561
                type="uniform_random",
562
                inputs={},
563
                outputs={"Out": out_var},
564
                attrs={
565 566
                    "shape": out_var.shape,
                    "dtype": out_dtype,
567 568 569
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
570 571
                },
                stop_gradient=True)
572 573 574

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
575
            op = block._prepend_op(
576
                type="gaussian_random",
577
                outputs={"Out": out_var},
578
                attrs={
579 580
                    "shape": out_var.shape,
                    "dtype": out_dtype,
581 582 583
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
584 585
                },
                stop_gradient=True)
586

587
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
588 589 590 591 592 593 594
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
595
        if not framework.in_dygraph_mode():
596
            var.op = op
597
        return op
598 599 600


class MSRAInitializer(Initializer):
601
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
602 603

    This class implements the weight initialization from the paper
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
623 624 625
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
626 627 628 629 630 631

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
632

633
            import paddle
X
xsrobin 已提交
634
            import paddle.fluid as fluid
635
            paddle.enable_static()
D
Double_V 已提交
636
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
637 638
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
639

640 641 642 643 644 645 646 647 648 649 650 651
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

652 653
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
654 655

        Args:
656 657 658
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
659 660

        Returns:
661
            The initialization op
662
        """
663 664
        block = self._check_block(block)

665 666 667 668 669 670 671
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
672 673 674
        if self._seed == 0:
            self._seed = block.program.random_seed

675
        # to be compatible of fp16 initalizers
676
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
677 678 679 680 681 682 683 684 685 686 687 688
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

689 690
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
691
            op = block._prepend_op(
692
                type="uniform_random",
693
                inputs={},
694
                outputs={"Out": out_var},
695
                attrs={
696 697
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
698 699 700
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
701 702
                },
                stop_gradient=True)
703 704 705

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
706
            op = block._prepend_op(
707
                type="gaussian_random",
708
                outputs={"Out": out_var},
709
                attrs={
710 711
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
712 713 714
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
715 716
                },
                stop_gradient=True)
717

718
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
719 720 721 722 723 724 725
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
726
        if not framework.in_dygraph_mode():
727
            var.op = op
728
        return op
729 730


731
class BilinearInitializer(Initializer):
732
    """
733 734 735
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
736 737 738 739 740

    Examples:

        .. code-block:: python

741
            import math
742 743 744 745 746

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
747 748
            factor = 2
            C = 2
D
Double_V 已提交
749 750
            B = 8
            H = W = 32
751 752 753 754
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
755
            conv_up = nn.Conv2DTranspose(3,
756 757 758 759 760 761 762 763 764 765 766
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
767 768 769 770
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
771 772
    interpolation unchanged during training.

773 774 775 776 777 778 779
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

780 781
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
782 783

        Args:
784 785 786
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
787 788

        Returns:
789
            The initialization op
790
        """
791 792
        block = self._check_block(block)

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

817
        # to be compatible of fp16 initalizers
818 819 820
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
821 822 823 824 825 826 827 828 829 830 831 832 833
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
834 835 836
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
837 838
            raise TypeError("Unsupported dtype %s", var.dtype)

839 840 841 842
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
843
            outputs={'Out': [out_var]},
844
            attrs={
845
                'dtype': out_dtype,
846 847 848
                'shape': list(shape),
                value_name: values
            })
849

850 851 852
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
853 854 855 856 857 858 859
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
860
        if not framework.in_dygraph_mode():
861
            var.op = op
862 863 864
        return op


865 866
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
867
    This op initialize the variable by numpy array.
868 869 870 871

    Args:
        value (numpy): numpy array to initialize the variable

872 873 874
    Returns:
        A Tensor variable initialized by numpy.

875 876 877
    Examples:
        .. code-block:: python

878
            import paddle.fluid as fluid
879 880
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
881 882 883 884 885 886 887 888 889 890
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

891 892
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
893 894

        Args:
895 896 897
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
898 899

        Returns:
900
            The initialization op
901
        """
902 903
        block = self._check_block(block)

904 905
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
906 907

        # to be compatible of fp16 initalizers
908
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
909 910 911 912 913 914 915 916 917 918 919 920 921 922
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

923
        # Initialization Ops should be prepended and not appended
924
        if out_dtype == VarDesc.VarType.FP32:
925
            value_name = "fp32_values"
926 927
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
928
            value_name = "int32_values"
929
            values = [int(v) for v in np_value.flat]
930 931
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
932
        if self._value.size > 1024 * 1024 * 1024:
933 934 935 936
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
937
            outputs={'Out': out_var},
938
            attrs={
939
                'dtype': out_dtype,
940
                'shape': list(self._value.shape),
941 942 943
                value_name: values
            },
            stop_gradient=True)
944

945
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
946 947 948 949 950 951 952
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
953
        if not framework.in_dygraph_mode():
954
            var.op = op
955 956 957
        return op


958 959 960 961 962 963 964
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
965
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

985 986 987 988 989
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
990 991 992

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
993 994
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
995 996 997 998

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
999 1000 1001 1002
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1003 1004

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1005
            nn.initializer.set_global_initializer(None)
1006
    """
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1045
TruncatedNormal = TruncatedNormalInitializer
1046 1047
Xavier = XavierInitializer
MSRA = MSRAInitializer
1048
Bilinear = BilinearInitializer