parallel_executor.cc 19.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
qingqing01 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Y
yuyang18 已提交
22
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
23
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
30
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
33
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
34
#endif
Y
Yu Yang 已提交
35
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
36 37
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
38
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
39
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
40

Y
Yang Yang 已提交
41
namespace paddle {
Y
Yu Yang 已提交
42 43
namespace framework {

Y
Yu Yang 已提交
44
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
static bool gProfileStarted = false;
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48 49 50
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
51
      : places_(places) {
Y
Yu Yang 已提交
52
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
53 54
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
55
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
56 57 58
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
59
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
60 61 62 63
#endif
      });
    }
  }
Y
Yu Yang 已提交
64

65 66 67 68 69 70 71 72 73 74 75
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
76

77
  ir::Graph *PrepareGCAndRefCnts(ir::Graph *graph, size_t max_memory_size);
S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
90
      }
S
sneaxiy 已提交
91
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
92 93 94
    }
  }

D
dzhwinter 已提交
95
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
96 97
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
98
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
99
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
100

P
peizhilin 已提交
101
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
102
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
103
#endif
C
chengduoZH 已提交
104 105
  bool own_local_scope_;
  bool use_cuda_;
106
  bool use_all_reduce_;
107
  size_t nranks_;
S
sneaxiy 已提交
108

S
sneaxiy 已提交
109 110 111 112 113 114
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
115 116
};

117 118
ir::Graph *ParallelExecutorPrivate::PrepareGCAndRefCnts(
    ir::Graph *graph, size_t max_memory_size) {
S
sneaxiy 已提交
119 120 121 122 123
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
124
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
125
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
126 127
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
128 129
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
130
      } else {
S
sneaxiy 已提交
131 132
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
133 134
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
135
    } else {
S
sneaxiy 已提交
136
#endif
S
sneaxiy 已提交
137 138 139 140 141 142 143
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
144 145 146 147
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
148
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
149 150
  }

S
sneaxiy 已提交
151
  if (!gcs_.empty()) {
S
sneaxiy 已提交
152 153 154 155 156 157 158 159
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
160
    graph = ref_cnt_pass->Apply(graph);
S
sneaxiy 已提交
161 162 163 164 165 166 167 168 169 170
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
171
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
172 173 174 175 176
    VLOG(10) << "EagerDeletionPass Applied";
  }
  return graph;
}

177 178 179 180
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yan Xu 已提交
181 182 183 184 185 186 187 188
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
189
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
190
  member_->global_scope_ = scope;
191
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
192
  member_->build_strategy_ = build_strategy;
193 194
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
195
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
196 197 198 199
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
200 201
  }

202
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
203
  // Create local scopes
204
  if (local_scopes.empty()) {
C
chengduoZH 已提交
205
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
206 207
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
208
      member_->local_scopes_.emplace_back(&scope->NewScope());
209 210
    }
  } else {
C
chengduoZH 已提交
211
    member_->own_local_scope_ = false;
212 213
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
214
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
215
    }
Y
Yu Yang 已提交
216 217
  }

Y
Yancey1989 已提交
218 219 220
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
221 222
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
223 224 225 226
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
227

C
chengduoZH 已提交
228
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
229
// Bcast Parameters to all GPUs
P
peizhilin 已提交
230
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
231 232 233
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
234
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
235
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
236
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
237
    }
X
Xin Pan 已提交
238
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
239 240 241 242
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
243
      }
C
chengduoZH 已提交
244
    }
Y
Yancey1989 已提交
245

C
chengduoZH 已提交
246
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
247 248
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
Q
qingqing01 已提交
249

W
Wu Yi 已提交
250 251 252
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
253
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
254 255 256 257 258 259 260
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    std::unique_ptr<platform::NCCLContextMap> dev_nccl_ctxs;
    if (nccl_id == nullptr) {
      dev_nccl_ctxs.reset(new platform::NCCLContextMap(member_->places_));
    }
Q
qingqing01 已提交
261 262 263 264 265
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
W
Wu Yi 已提交
266 267 268 269 270 271 272
      if (nccl_id != nullptr) {
        auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      } else {
        auto &nccl_ctx = dev_nccl_ctxs->at(member_->places_[dev_id]);
        dev_ctx->set_nccl_comm(nccl_ctx.comm());
      }
Q
qingqing01 已提交
273
    }
C
chengduoZH 已提交
274 275
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
276
#endif
C
chengduoZH 已提交
277
  }
Y
Yan Xu 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
    if (build_strategy.num_trainers_ > 1) {
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };

  if (need_broadcast()) {
    BCastParamsToDevices(bcast_vars, build_strategy.trainer_id_);
Y
Yu Yang 已提交
293
  }
Y
Yan Xu 已提交
294

X
Xin Pan 已提交
295
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
296

X
Xin Pan 已提交
297 298
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
P
peizhilin 已提交
299
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
300 301 302
  graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
X
Xin Pan 已提交
303
#else
304 305 306
  graph = build_strategy.Apply(graph, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_);
X
Xin Pan 已提交
307

Y
Yu Yang 已提交
308
#endif
Y
Yancey1989 已提交
309
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
310 311
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
312
  if (max_memory_size >= 0) {
313 314
    graph = member_->PrepareGCAndRefCnts(graph,
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
315 316
  }

317 318
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
319
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
320 321 322 323 324 325
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
326 327
    }
  }
Y
Yancey1989 已提交
328

W
Wu Yi 已提交
329 330
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
331
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
332 333 334 335
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
336
          << ir::GraphNum(*graph)
C
chengduo 已提交
337 338 339 340 341
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
342 343
  }

Y
Yancey1989 已提交
344
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
345
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
346 347
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
348
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
349
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
350 351 352 353
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
354 355 356 357 358 359 360
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
361
    }
C
chengduoZH 已提交
362
  }
Y
yuyang18 已提交
363 364

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
365
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
366
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
367 368
}

Y
Yancey1989 已提交
369
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
370
    const std::vector<std::string> &vars, int trainer_id) const {
X
Xin Pan 已提交
371
  // the initializing bcast, all vars would be bcast from device(0).
372
  for (auto &var : vars) {
X
Xin Pan 已提交
373
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
374
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
375 376 377 378
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
379
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
380
      VLOG(3) << "one in var not inited, return!";
381 382
      continue;
    }
383 384
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
385
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
386
      std::vector<void *> buffers;
C
chengduo 已提交
387
      buffers.reserve(member_->places_.size());
388 389 390 391 392
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
393

Y
Yan Xu 已提交
394
        if (i == 0 && trainer_id == 0) {
395 396
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
397
          auto local_scope = member_->local_scopes_[i];
398
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
399
          t->Resize(dims);
400
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
401
        }
402
        buffers.push_back(buffer);
403
      }
404

405 406 407 408 409 410
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
411 412
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
413
        }
414
        member_->nccl_ctxs_->WaitAll();
415
      }
C
chengduoZH 已提交
416 417 418
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
419 420
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
421
      for (size_t i = 1; i < member_->places_.size(); ++i) {
422 423
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
424 425 426 427

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
428 429 430 431 432 433
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
434
      }
Y
Stash  
Yu Yang 已提交
435 436
    }
  }
Y
Yu Yang 已提交
437
}
Y
Yu Yang 已提交
438

Y
Yu Yang 已提交
439 440
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
441 442 443
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
444 445
  }
#endif
Y
Yu Yang 已提交
446

X
Xin Pan 已提交
447
  platform::RecordBlock b(0);
S
sneaxiy 已提交
448 449
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
450
  }
S
sneaxiy 已提交
451 452 453
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
454
}
Y
Yu Yang 已提交
455

Y
Yu Yang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
475 476 477 478 479
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
480 481
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
482
      auto t =
Y
Yu Yang 已提交
483
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
484 485
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
486 487 488 489
    }
  }
}

X
Xin Pan 已提交
490 491 492 493 494 495 496
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

X
Xin Pan 已提交
497 498 499
bool ParallelExecutor::EnableParallelGraphExecution(
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
500
  if (!FLAGS_enable_parallel_graph) return false;
501

Y
Yancey1989 已提交
502
  bool enable_parallel_graph = true;
503

X
Xin Pan 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
517 518 519
    }
  }

Y
Yancey1989 已提交
520
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
521

Y
Yancey1989 已提交
522 523 524
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
525
  return enable_parallel_graph;
526 527
}

Y
Yu Yang 已提交
528
}  // namespace framework
Y
Yang Yang 已提交
529
}  // namespace paddle
S
sneaxiy 已提交
530

S
sneaxiy 已提交
531
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
532
USE_PASS(eager_deletion_pass);