distribute_transpiler.py 86.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
G
gongweibao 已提交
159 160


Y
gen rst  
yi.wu 已提交
161
class DistributeTranspiler(object):
Y
yi.wu 已提交
162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
166
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
167

W
Wu Yi 已提交
168 169 170 171 172 173 174 175 176
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
177 178 179 180

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
194
                                                                pserver_program)
T
Tink_Y 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
209
    """
Y
Yancey1989 已提交
210

G
gongweibao 已提交
211 212 213 214 215 216 217 218 219
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

220 221 222
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
223 224 225
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
226 227 228 229
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
230 231
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
232 233 234 235 236 237
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
238 239
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
256
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
257
        sparse_update_ops = []
258
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
259 260
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
261
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
262 263 264
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
265
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
266
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
267 268 269
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
270
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
271
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
272 273 274 275 276 277 278
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
279

280 281 282 283 284
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
285
                  sync_mode=True,
W
Wu Yi 已提交
286 287
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
288
        """
Y
yi.wu 已提交
289 290 291 292 293 294 295
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
296 297
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
298 299
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
300 301 302
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
303
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
304 305
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
306 307 308
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
309 310 311
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
312 313
        if startup_program is None:
            startup_program = default_startup_program()
314
        self.origin_program = program
W
Wu Yi 已提交
315 316
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
317

W
Wu Yi 已提交
318 319
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
320
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
321 322 323 324
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
325 326
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
327 328
            return

329 330 331 332 333
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
334
        self.vars_overview = VarsDistributed()
335 336
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
337
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
338 339
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
340
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
341
        self.grad_name_to_param_name = dict()
342 343
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
344
            self.grad_name_to_param_name[grad_var.name] = param_var.name
345

Q
Qiao Longfei 已提交
346
        # get all sparse update ops
Q
Qiao Longfei 已提交
347
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
348
            self.origin_program)
Q
Qiao Longfei 已提交
349
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
350 351
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
352 353 354
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
355
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
356 357 358
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

359
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
360
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
361
        self._init_splited_vars()
362

G
gongweibao 已提交
363
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
364
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
365
        send_vars = []
366 367 368 369 370 371

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
372
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
373

G
gongweibao 已提交
374
        if not self.config.slice_var_up:
375 376
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
377

378
        self.grad_name_to_send_dummy_out = dict()
379
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
380
            eplist = ps_dispatcher.dispatch(splited_vars)
381

G
gongweibao 已提交
382
            if not self.config.slice_var_up:
383 384
                assert (len(splited_vars) == 1)

385
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
386
            if len(splited_vars) == 1:
387
                splited_grad_varname = splited_vars[0].name
388 389
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
390 391
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
392
                        grad_varname]
Q
Qiao Longfei 已提交
393 394 395 396
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
397
            elif len(splited_vars) > 1:
398
                orig_var = program.global_block().vars[splited_grad_varname]
399 400
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
401
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
402
                index += 1
Y
Yancey1989 已提交
403 404
            else:
                AssertionError("Can not insert the send op by original "
405
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
406

W
Wu Yi 已提交
407 408
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
409
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
410

W
Wu Yi 已提交
411 412 413 414
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
415
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
416
                index=index + 1,
417
                type="send",
Y
update  
Yancey1989 已提交
418
                inputs={"X": splited_vars},
419
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
420 421
                attrs={
                    "epmap": eplist,
422
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
423 424 425 426
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
427
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
428
                })
Y
update  
Yancey1989 已提交
429 430
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
431 432

        if self.sync_mode:
W
Wu Yi 已提交
433 434
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
435 436 437 438
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
439
            input_deps = list(self.grad_name_to_send_dummy_out.values())
440

Y
Yancey1989 已提交
441 442
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
443
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
444
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
445 446
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
447 448
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
449
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
450
                })
Y
Yancey1989 已提交
451

G
gongweibao 已提交
452
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
453
        recv_vars = []
Y
update  
Yancey1989 已提交
454
        for _, var in enumerate(send_vars):
455
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
456
        ps_dispatcher.reset()
Y
Yancey1989 已提交
457 458
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
459
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
460 461
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
462

463 464 465 466
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
467
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
468
        all_recv_outputs = []
469
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
470
            eps = []
Q
Qiao Longfei 已提交
471
            table_names = []
Y
Yancey1989 已提交
472 473 474
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
475
                table_names.append(var.name)
W
Wu Yi 已提交
476 477 478 479
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
480
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
481
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
482

W
Wu Yi 已提交
483 484 485 486 487 488 489 490 491
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
492
            if param_varname in self.sparse_param_to_height_sections:
493 494 495 496 497 498

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
499 500
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
501 502
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
503
            else:
Q
Qiao Longfei 已提交
504
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
505 506 507 508 509 510 511 512 513 514 515 516
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
517

Q
qiaolongfei 已提交
518
        if self.sync_mode:
W
Wu Yi 已提交
519
            # form a WAW dependency
Q
qiaolongfei 已提交
520 521 522
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
523
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
524 525
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
526
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
527 528
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
529

530
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
531 532
            if len(splited_var) <= 1:
                continue
533
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
534 535 536 537 538 539 540 541 542
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
543

G
gongweibao 已提交
544 545
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

546
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
547 548
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
549
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
550

551 552 553
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
554
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
555 556 557 558 559 560
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
561
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
562
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
563

T
typhoonzero 已提交
564
        lr_ops = self._get_lr_ops()
565
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
566 567
        delete_ops(self.origin_program.global_block(), lr_ops)

568 569
        # delete table init op
        if self.has_distributed_lookup_table:
570 571 572
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
573 574
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
575 576 577 578 579
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
580
            table_init_op = table_param_init_op[0]
581 582 583 584 585 586
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
587

588
        self.origin_program.__str__()
G
gongweibao 已提交
589

W
Wu Yi 已提交
590 591 592
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

593
        return self.origin_program
T
typhoonzero 已提交
594

W
Wu Yi 已提交
595
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
596 597 598 599
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
600
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
601
            eplist (list): A list of strings indicating
G
gongweibao 已提交
602 603 604 605

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
606
        startup_program = self.startup_program
G
gongweibao 已提交
607 608 609 610

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
611
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
632
                inputs={"X": []},
G
gongweibao 已提交
633 634 635 636 637 638
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
639 640
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
641 642 643
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
644
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
645 646 647 648 649
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
650
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
651
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
652 653
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
654
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
655
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
656 657 658 659 660 661 662 663 664 665
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
666 667 668 669 670 671 672 673
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
674 675
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
676
        Get parameter server side program.
677

Y
yi.wu 已提交
678 679
        Args:
            endpoint (str): current parameter server endpoint.
680

Y
yi.wu 已提交
681 682
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
683
        """
Y
yi.wu 已提交
684 685 686 687
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
688 689 690
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
691 692
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
693
        pserver_program.random_seed = self.origin_program.random_seed
694 695
        pserver_program._copy_dist_param_info_from(self.origin_program)

696
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
697 698 699 700 701 702 703 704
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
705 706 707 708 709
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
710 711 712 713 714 715 716 717 718
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
719
            if self.sync_mode and self.trainer_num > 1:
720
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
721 722 723 724 725 726 727 728 729
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
730

Q
qiaolongfei 已提交
731
        # step 3
732
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
733 734 735
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
736
        # step 3.2
T
typhoonzero 已提交
737 738 739 740
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
741 742
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
743
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
744
        # step 3.3
W
Wu Yi 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
763
        # Iterate through the ops, and if an op and the optimize ops
764
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
765
        # append it into the sub program.
T
typhoonzero 已提交
766 767 768

        global_ops = []

Y
wip  
yi.wu 已提交
769 770
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
771
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
772
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
773
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
774
            elif op not in lr_ops:
Q
Qiyang Min 已提交
775
                self._append_pserver_non_opt_ops(block, op)
776

Y
Yancey1989 已提交
777
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
778 779 780 781 782 783 784 785
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
786
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
787 788 789

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
790
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
791 792

            # clone ops
Y
Yancey1989 已提交
793 794
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
795
                # clone sub_block of op
Y
Yancey1989 已提交
796
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
797 798

            # reset the block of op
W
Wu Yi 已提交
799
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
800

801
        # append lr decay ops to the child block if exists
802
        lr_ops = self._get_lr_ops()
803 804
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
805
        if len(lr_ops) > 0:
W
Wu Yi 已提交
806
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
807
                pserver_program.num_blocks - 1)
808
            optimize_blocks.append(lr_decay_block)
809
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
810
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
811
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
812 813
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
814

T
typhoonzero 已提交
815
        # append op to the current block
Q
qiaolongfei 已提交
816
        grad_to_block_id = []
Q
qiaolongfei 已提交
817
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
818
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
819
            per_opt_block = pserver_program._create_block(pre_block_idx)
820
            optimize_blocks.append(per_opt_block)
821
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
822
            # append grad merging ops before clip and weight decay
823 824
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
825
            for _, op in enumerate(self.optimize_ops):
826
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
827
                # merged_var should be the input var name of L2Decay
828 829 830
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
831 832 833
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
834 835 836 837 838 839
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
840
                            op not in global_ops:
841 842 843 844 845
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
846

847
        # dedup grad to ids list
W
Wu Yi 已提交
848
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
849
        # append global ops
850
        if global_ops:
W
Wu Yi 已提交
851
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
852
                pserver_program.num_blocks - 1)
853
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
854
            for glb_op in global_ops:
X
Xi Chen 已提交
855
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
856
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
857

858
        # process distributed lookup_table
Q
qiaolongfei 已提交
859
        prefetch_var_name_to_block_id = []
860 861
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
862
            table_opt_block = self._create_table_optimize_block(
863
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
864
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
865
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
866
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
867 868
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
869

T
tangwei12 已提交
870
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
871 872
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
873

874
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
875 876
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
877 878 879 880 881 882
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
883
        attrs = {
884
            "optimize_blocks": optimize_blocks,
885 886 887
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
888
            "grad_to_block_id": grad_to_block_id,
889
        }
T
tangwei12 已提交
890 891

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
892
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
893 894
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
895

T
tangwei12 已提交
896 897 898 899
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
900 901 902 903 904
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
905
            attrs=attrs)
906

W
Wu Yi 已提交
907
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
908 909
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
910 911
        return pserver_program

W
Wu Yi 已提交
912 913 914 915 916 917
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
918

W
Wu Yi 已提交
919 920 921 922
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
923 924
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
925 926
        return pserver_prog, pserver_startup

927 928
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
929
                            pserver_program=None,
930
                            startup_program=None):
T
typhoonzero 已提交
931
        """
W
Wu Yi 已提交
932 933
        **Deprecated**

T
typhoonzero 已提交
934 935 936
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
937 938 939

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
940 941
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
942
                when initalizing
943

Y
yi.wu 已提交
944 945
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
946 947
        """
        s_prog = Program()
W
Wu Yi 已提交
948
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
949
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
950 951 952 953 954 955 956 957 958 959 960
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
961
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
962
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
963
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
964 965 966 967
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
968
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
969 970
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
971 972 973 974 975 976 977 978 979 980
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
981 982

            if op_on_pserver:
983 984 985
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
986 987 988
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
989
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
990 991 992 993
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
994
                    attrs=op.all_attrs())
W
Wu Yi 已提交
995 996 997 998 999 1000 1001 1002 1003
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1004

T
typhoonzero 已提交
1005 1006
        return s_prog

1007 1008
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1009
        block_suffix = "block"
1010 1011 1012
        block_idx = 0
        offset = 0
        is_slice = False
1013

1014
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1015

1016 1017
        if not block_name:
            return is_slice, block_idx, offset
1018

1019 1020 1021 1022
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

1023 1024 1025 1026 1027
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1091

Y
yi.wu 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1131
    def _init_splited_vars(self):
Y
yi.wu 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1155
        if self.config.slice_var_up:
Y
yi.wu 已提交
1156 1157
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1158 1159 1160
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1161
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1162 1163
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1164 1165 1166
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1167 1168 1169 1170
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1171 1172
        assert (len(grad_blocks) == len(param_blocks))

1173
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1174 1175
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1192
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1193 1194 1195 1196
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1197
        # dict(grad_splited_var -> param_splited_var)
1198
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1199 1200 1201
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1202
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1203
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1204 1205

        # create mapping of endpoint -> split var to create pserver side program
1206
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1216
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1217 1218
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1219
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1220
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1221 1222
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1223 1224
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1225 1226 1227 1228 1229 1230

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1231 1232
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1233
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1234 1235 1236
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1237 1238
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1239 1240
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1241 1242 1243
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1244
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1245
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1246 1247

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1248
                    self.all_out_emb_vars.append(out_var)
1249 1250

                    # delete lookup_table_op
1251
                    delete_ops(program.global_block(), [op])
1252 1253 1254
                    # break for loop
                    break

S
seiriosPlus 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1301
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1302
        # 2. add split_ids_op and send_op to send gradient to pservers
1303

1304 1305
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1306
        table_grad_name = grad_var_name(self.table_name)
1307 1308 1309 1310
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1311
                program.global_block()._insert_op(
1312 1313 1314 1315 1316
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1317 1318
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1319
                program.global_block()._insert_op(
1320
                    index=op_index + 2,
1321
                    type="send",
1322
                    inputs={'X': self.trainer_side_table_grad_list},
1323 1324 1325 1326 1327
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1328
                    attrs={
1329
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1330
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1331
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1332 1333 1334 1335 1336
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1337
                    })
1338 1339 1340 1341 1342 1343
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1344
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1370
        return prefetch_var_name_to_block_id
1371 1372

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1373
                                     pre_block_idx, grad_to_block_id):
1374
        # STEP: create table optimize block
1375
        table_opt_block = pserver_program._create_block(pre_block_idx)
1376
        # create table param and grad var in pserver program
1377 1378
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1379 1380 1381
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1382 1383
        ][0]

Y
Yancey1989 已提交
1384 1385
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1386

T
tangwei12 已提交
1387
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1388 1389
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1390 1391 1392
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1393 1394
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1395
            shape=table_shape,
Y
Yancey1989 已提交
1396 1397 1398
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1399

1400 1401
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1402
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1403
            self.origin_program.global_block().vars[grad_var_name(
1404
                self.table_name)])
1405

1406 1407 1408
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1409

1410 1411 1412
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1413
            pserver_side_table_grad_list = [
1414 1415 1416 1417 1418 1419 1420 1421 1422
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1423
            # append sum op for pserver_side_table_grad_list
1424 1425
            table_opt_block.append_op(
                type="sum",
1426
                inputs={"X": pserver_side_table_grad_list},
1427 1428
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1429 1430
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1431
            origin_grad_name = grad_var.name
1432 1433
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1434 1435
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1436
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1437
            grad_var = pserver_program.global_block()._rename_var(
1438
                origin_grad_name, splited_grad_name)
1439 1440 1441 1442 1443 1444 1445

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1446
        # only support sgd now
1447 1448 1449
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1450
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1451

1452 1453 1454
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1455 1456
        return table_opt_block

T
tangwei12 已提交
1457 1458 1459 1460 1461
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1462
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1463
            name="kLookupTablePath",
T
tangwei12 已提交
1464 1465
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1466

W
Wu Yi 已提交
1467
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1468
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1469 1470 1471 1472
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1473
            attrs={'file_path': "none"})
T
tangwei12 已提交
1474 1475 1476

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1477 1478 1479 1480 1481
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1482
        Create vars for each split.
T
typhoonzero 已提交
1483 1484
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1485 1486 1487 1488
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1489
        Returns:
1490
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1491
                from original var name to each var split.
T
typhoonzero 已提交
1492
        """
1493 1494

        # varname->[(block_id, current_block_size)]
1495
        block_map = collections.OrderedDict()
1496

1497
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1498 1499
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1500
            if varname not in block_map:
T
typhoonzero 已提交
1501
                block_map[varname] = []
1502
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1503

M
minqiyang 已提交
1504
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1505
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1506
            if len(splited) == 1:
1507
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1508
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1509
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1510
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1511 1512 1513 1514 1515
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1516
                continue
T
typhoonzero 已提交
1517
            var_mapping[varname] = []
T
typhoonzero 已提交
1518 1519 1520 1521
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1522

T
typhoonzero 已提交
1523
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1524
                size = block[1]
M
minqiyang 已提交
1525
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1526 1527 1528
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1529
                new_var_name = ""
1530
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1531
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1532
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1533 1534
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1535
                                   (varname, i)
T
typhoonzero 已提交
1536
                var = program.global_block().create_var(
T
typhoonzero 已提交
1537 1538
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1539
                    dtype=orig_var.dtype,
1540
                    type=orig_var.type,
T
typhoonzero 已提交
1541
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1542
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1543
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1544
        return var_mapping
T
done  
typhoonzero 已提交
1545

1546
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1547 1548 1549 1550 1551 1552
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1553
            persistable=persistable)
T
done  
typhoonzero 已提交
1554

Y
Yancey1989 已提交
1555
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1556 1557 1558 1559
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1560
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1561
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1562 1563
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1564
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1565 1566 1567 1568
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1569 1570 1571 1572
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1573 1574 1575 1576
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1577
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1578 1579 1580 1581
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1582 1583 1584 1585
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1586 1587 1588
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1589

T
typhoonzero 已提交
1590 1591 1592 1593
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1594
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1607
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1608 1609
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1610 1611
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1612
                return param_shape
1613 1614 1615
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1616 1617 1618
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1619 1620
        elif op_type == "sgd":
            pass
1621 1622 1623 1624
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1625 1626
        return orig_shape

1627 1628
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1629
        orig_var_name = ""
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1640
        else:
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1663
            return None
1664 1665 1666 1667
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1668
        else:
1669
            merged_var_name = orig_varname
1670 1671

        merged_var = pserver_block.vars[merged_var_name]
1672 1673 1674
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1675
            for i in range(self.trainer_num):
1676
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1677
                                   (merged_var_name, i)
1678 1679 1680 1681
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1682 1683
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1684 1685 1686 1687 1688
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1689
        return merged_var
T
typhoonzero 已提交
1690

W
Wu Yi 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1753
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1754
                            grad_to_block_id, origin_program, merged_var):
1755
        program = optimize_block.program
T
typhoonzero 已提交
1756
        pserver_block = program.global_block()
1757
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1768 1769 1770 1771
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1772
        for key in opt_op.input_names:
T
typhoonzero 已提交
1773
            if key == "Grad":
W
Wu Yi 已提交
1774 1775 1776
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1787
            elif key == "Param":
W
Wu Yi 已提交
1788
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1789 1790
                if not param_block:
                    return
T
typhoonzero 已提交
1791
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1792
                    name=param_block.name,
T
typhoonzero 已提交
1793
                    persistable=True,
T
typhoonzero 已提交
1794 1795 1796
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1797
            elif key == "LearningRate":
1798
                # learning rate variable has already be created by non-optimize op,
1799
                # don't create it once again.
1800
                lr_varname = opt_op.input(key)[0]
1801
                if lr_varname in pserver_block.vars:
1802 1803 1804 1805 1806 1807 1808 1809 1810
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1811

T
typhoonzero 已提交
1812
        for key in opt_op.input_names:
1813
            new_shape = None
W
Wu Yi 已提交
1814
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1815
                continue
1816
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1817
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1818
            # update accumulator variable shape
1819 1820
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1821
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1822 1823 1824 1825 1826
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1827

1828
        # change output's ParamOut variable
1829 1830
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1831
        outputs["ParamOut"] = new_inputs["Param"]
1832
        optimize_block.append_op(
T
typhoonzero 已提交
1833 1834
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1835
            outputs=outputs,
G
gongweibao 已提交
1836
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1849
        grad_block = None
M
minqiyang 已提交
1850
        for _, g in six.iteritems(var_dict):
1851
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1852
                # skip per trainer vars
1853
                if g.name.find(".trainer_") == -1:
1854
                    # only param or grads have splited blocks
1855 1856
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1857 1858
                        grad_block = g
                        break
1859 1860
        return grad_block

Q
Qiyang Min 已提交
1861 1862 1863
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1864
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1865 1866 1867 1868
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1869
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1870 1871 1872

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1873
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1874 1875 1876 1877
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1878
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1879

Y
Yancey1989 已提交
1880
        return block.append_op(
G
gongweibao 已提交
1881
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1882 1883

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1884
        program = optimize_block.program
1885
        # Append the ops for parameters that do not need to be optimized/updated
1886 1887
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1888
        for key, varlist in six.iteritems(inputs):
1889 1890
            if not isinstance(varlist, list):
                varlist = [varlist]
1891 1892 1893
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1894
                # for inputs/outputs
1895
                grad_block = self._get_pserver_grad_param_var(
1896 1897
                    var, program.global_block().vars)
                if grad_block:
1898
                    varlist[i] = grad_block
1899
                elif var.name not in program.global_block().vars:
1900 1901 1902 1903 1904
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1905

1906 1907
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1908
        for key, varlist in six.iteritems(outputs):
1909 1910
            if not isinstance(varlist, list):
                varlist = [varlist]
1911 1912 1913
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1914 1915
                    var, program.global_block().vars)
                if grad_block:
1916
                    varlist[i] = grad_block
1917
                elif var.name not in program.global_block().vars:
1918 1919 1920 1921 1922
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1923

Y
Yancey1989 已提交
1924
        return optimize_block.append_op(
T
typhoonzero 已提交
1925
            type=opt_op.type,
T
typhoonzero 已提交
1926 1927
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1928
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1929

1930 1931 1932 1933
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1934
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1935
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1936 1937 1938 1939 1940 1941
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1942 1943
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1944 1945 1946 1947 1948 1949
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1950
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1951
        if "Param" in op.input_names and \
T
tangwei12 已提交
1952
                "LearningRate" in op.input_names:
1953 1954 1955 1956 1957 1958 1959
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1960
        if op.input("Param")[0] in param_names:
1961 1962 1963
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1964
                param = op.input("Param")[0]
T
typhoonzero 已提交
1965
                if same_or_split_var(n, param) and n != param:
1966 1967 1968
                    return True
            return False

T
typhoonzero 已提交
1969
    def _get_input_map_from_op(self, varmap, op):
1970
        """Returns a dict from op input name to the vars in varmap."""
1971
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1983
        """Returns a dict from op output name to the vars in varmap."""
1984
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1994 1995

    def _get_lr_ops(self):
1996 1997 1998
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1999 2000 2001 2002
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2003 2004 2005 2006 2007
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2008 2009 2010 2011
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2012
            if self._is_optimizer_op(op):
2013 2014 2015 2016
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2017
        block = self.origin_program.global_block()
2018 2019 2020 2021 2022
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2023

2024 2025 2026 2027 2028
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2029
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2030 2031 2032 2033 2034 2035
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2036 2037
                    # we only need to append op for once
                    break
2038
        return lr_ops
Y
Yancey1989 已提交
2039

W
Wu Yi 已提交
2040 2041 2042 2043 2044
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2045 2046
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2047 2048 2049
            return True
        return False

Y
Yancey1989 已提交
2050
    def _get_optimize_pass(self):
2051
        """
2052
        Get optimizer operators, parameters and gradients from origin_program
2053 2054 2055 2056
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
2057 2058 2059
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2060 2061
        # tmp set to dedup
        optimize_params = set()
2062
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2063
        for op in block.ops:
W
Wu Yi 已提交
2064
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2065
                opt_ops.append(op)
2066 2067 2068 2069 2070 2071
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2072 2073
                        params_grads.append([
                            origin_var_dict[param_name],
2074
                            origin_var_dict[grad_name]
2075
                        ])
Y
Yancey1989 已提交
2076 2077 2078
            else:
                pass
        return opt_ops, params_grads