distribute_transpiler.py 82.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
142
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
143 144
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
145 146 147 148 149
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
150
    enable_dc_asgd = False
W
Wu Yi 已提交
151 152
    # supported modes: pserver, nccl2
    mode = "pserver"
153
    print_log = False
W
Wu Yi 已提交
154
    wait_port = True
G
gongweibao 已提交
155 156


Y
gen rst  
yi.wu 已提交
157
class DistributeTranspiler(object):
Y
yi.wu 已提交
158 159 160 161
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
162
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
163

W
Wu Yi 已提交
164 165 166 167 168 169 170 171 172
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
173 174 175 176

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
190
                                                                pserver_program)
T
Tink_Y 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
205
    """
Y
Yancey1989 已提交
206

G
gongweibao 已提交
207 208 209 210 211 212 213 214 215
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

216 217 218
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
219 220 221
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
222 223 224 225
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
W
Wu Yi 已提交
226 227
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
228 229 230 231 232 233
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
W
Wu Yi 已提交
234 235
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
252
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
253
        sparse_update_ops = []
254
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
255 256
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
257
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
258 259 260
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
261
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
262
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
263 264 265
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
266
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
267
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
275

276 277 278 279 280
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
281
                  sync_mode=True,
W
Wu Yi 已提交
282 283
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
284
        """
Y
yi.wu 已提交
285 286 287 288 289 290 291
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
292 293
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
294 295
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
296 297 298
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
299
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
300 301
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
302 303 304
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
305 306 307
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
308 309
        if startup_program is None:
            startup_program = default_startup_program()
310
        self.origin_program = program
W
Wu Yi 已提交
311 312
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
313

W
Wu Yi 已提交
314 315
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
316
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
317 318 319 320
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
W
Wu Yi 已提交
321 322
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
323 324
            return

325 326 327 328 329 330 331
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
332
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
333 334
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
335
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
336
        self.grad_name_to_param_name = dict()
337 338
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
339
            self.grad_name_to_param_name[grad_var.name] = param_var.name
340

Q
Qiao Longfei 已提交
341
        # get all sparse update ops
Q
Qiao Longfei 已提交
342
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
343
            self.origin_program)
Q
Qiao Longfei 已提交
344
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
345 346
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
347 348 349 350 351 352
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

353
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
354
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
355
        self._init_splited_vars()
356

G
gongweibao 已提交
357
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
358
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
359
        send_vars = []
360 361 362 363 364 365

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
366
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
367

G
gongweibao 已提交
368
        if not self.config.slice_var_up:
369 370
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
371

372
        self.grad_name_to_send_dummy_out = dict()
373
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
374
            eplist = ps_dispatcher.dispatch(splited_vars)
375

G
gongweibao 已提交
376
            if not self.config.slice_var_up:
377 378
                assert (len(splited_vars) == 1)

379
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
380
            if len(splited_vars) == 1:
381
                splited_grad_varname = splited_vars[0].name
382 383
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
384 385
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
386
                        grad_varname]
Q
Qiao Longfei 已提交
387 388 389 390
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
391
            elif len(splited_vars) > 1:
392
                orig_var = program.global_block().vars[splited_grad_varname]
393 394
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
395
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
396
                index += 1
Y
Yancey1989 已提交
397 398
            else:
                AssertionError("Can not insert the send op by original "
399
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
400

W
Wu Yi 已提交
401 402
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
403
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
404

W
Wu Yi 已提交
405 406 407 408
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
409
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
410
                index=index + 1,
411
                type="send",
Y
update  
Yancey1989 已提交
412
                inputs={"X": splited_vars},
413
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
414 415
                attrs={
                    "epmap": eplist,
416
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
417 418 419 420
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
421
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
422
                })
Y
update  
Yancey1989 已提交
423 424
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
425 426

        if self.sync_mode:
W
Wu Yi 已提交
427 428
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
429 430 431 432
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
433
            input_deps = list(self.grad_name_to_send_dummy_out.values())
434

Y
Yancey1989 已提交
435 436
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
437
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
438
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
439 440
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
441 442
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
443
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
444
                })
Y
Yancey1989 已提交
445

G
gongweibao 已提交
446
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
447
        recv_vars = []
Y
update  
Yancey1989 已提交
448
        for _, var in enumerate(send_vars):
449
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
450
        ps_dispatcher.reset()
Y
Yancey1989 已提交
451 452
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
453
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
454 455
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
456

Y
Yancey1989 已提交
457
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
458
        all_recv_outputs = []
459
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
460
            eps = []
Q
Qiao Longfei 已提交
461
            table_names = []
Y
Yancey1989 已提交
462 463 464
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
465
                table_names.append(var.name)
W
Wu Yi 已提交
466 467 468 469
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
470
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
471
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
472

W
Wu Yi 已提交
473 474 475 476 477 478 479 480 481
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
482 483 484
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
485 486
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
487
            else:
Q
Qiao Longfei 已提交
488
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
489 490 491 492 493 494 495 496 497 498 499 500
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
501

Q
qiaolongfei 已提交
502
        if self.sync_mode:
W
Wu Yi 已提交
503
            # form a WAW dependency
Q
qiaolongfei 已提交
504 505 506
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
507
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
508 509
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
510
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
511 512
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
513

514
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
515 516
            if len(splited_var) <= 1:
                continue
517
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525 526
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
527

G
gongweibao 已提交
528 529
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

530
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
531 532
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
533
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
534

W
Wu Yi 已提交
535
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
536 537 538 539 540 541
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
542
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
543
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
544
        lr_ops = self._get_lr_ops()
545
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
546 547
        delete_ops(self.origin_program.global_block(), lr_ops)

548 549
        # delete table init op
        if self.has_distributed_lookup_table:
550 551 552
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
553 554
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
555 556 557 558 559
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
560
            table_init_op = table_param_init_op[0]
561 562 563 564 565 566
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
567

568
        self.origin_program.__str__()
G
gongweibao 已提交
569

W
Wu Yi 已提交
570 571 572
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

573
        return self.origin_program
T
typhoonzero 已提交
574

W
Wu Yi 已提交
575
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
576 577 578 579
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
580
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
581
            eplist (list): A list of strings indicating
G
gongweibao 已提交
582 583 584 585

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
586
        startup_program = self.startup_program
G
gongweibao 已提交
587 588 589 590

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
591
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
612
                inputs={"X": []},
G
gongweibao 已提交
613 614 615 616 617 618
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
619 620
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
621 622 623
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
624
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
625 626 627 628 629
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
630
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
631
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
632 633
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
634
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
635
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
636 637 638 639 640 641 642 643 644 645
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
646 647 648 649 650 651 652 653
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
654 655
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
656
        Get parameter server side program.
657

Y
yi.wu 已提交
658 659
        Args:
            endpoint (str): current parameter server endpoint.
660

Y
yi.wu 已提交
661 662
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
663
        """
Y
yi.wu 已提交
664 665 666 667
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
T
typhoonzero 已提交
668 669
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
670
        pserver_program.random_seed = self.origin_program.random_seed
671
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
672 673 674 675 676 677 678 679
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
680 681 682 683 684
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
685 686 687 688 689 690 691 692 693
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
694
            if self.sync_mode and self.trainer_num > 1:
695
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
696 697 698 699 700 701 702 703 704
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
705

706 707 708
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
709
        # step 3
710
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
711 712 713
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
714
        # step 3.2
T
typhoonzero 已提交
715 716 717 718
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
719 720
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
721
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
722
        # step 3.3
W
Wu Yi 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
741
        # Iterate through the ops, and if an op and the optimize ops
742
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
743
        # append it into the sub program.
T
typhoonzero 已提交
744 745 746

        global_ops = []

Y
wip  
yi.wu 已提交
747 748
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
749
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
750
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
751
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
752
            elif op not in lr_ops:
Q
Qiyang Min 已提交
753
                self._append_pserver_non_opt_ops(block, op)
754

Y
Yancey1989 已提交
755
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
756 757 758 759 760 761 762 763
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
764
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
765 766 767

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
768
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
769 770

            # clone ops
Y
Yancey1989 已提交
771 772
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
773
                # clone sub_block of op
Y
Yancey1989 已提交
774
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
775 776

            # reset the block of op
W
Wu Yi 已提交
777
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
778

779
        # append lr decay ops to the child block if exists
780
        lr_ops = self._get_lr_ops()
781 782
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
783
        if len(lr_ops) > 0:
W
Wu Yi 已提交
784
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
785
                pserver_program.num_blocks - 1)
786
            optimize_blocks.append(lr_decay_block)
787
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
788
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
789
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
790 791
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
792

T
typhoonzero 已提交
793
        # append op to the current block
Q
qiaolongfei 已提交
794
        grad_to_block_id = []
Q
qiaolongfei 已提交
795
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
796
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
797
            per_opt_block = pserver_program._create_block(pre_block_idx)
798
            optimize_blocks.append(per_opt_block)
799
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
800
            # append grad merging ops before clip and weight decay
801 802
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
803
            for _, op in enumerate(self.optimize_ops):
804
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
805
                # merged_var should be the input var name of L2Decay
806 807 808
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
809 810 811
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
812 813 814 815 816 817
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
818
                            op not in global_ops:
819 820 821 822 823
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
824

825
        # dedup grad to ids list
W
Wu Yi 已提交
826
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
827
        # append global ops
828
        if global_ops:
W
Wu Yi 已提交
829
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
830
                pserver_program.num_blocks - 1)
831
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
832
            for glb_op in global_ops:
X
Xi Chen 已提交
833
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
834
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
835

836
        # process distributed lookup_table
Q
qiaolongfei 已提交
837
        prefetch_var_name_to_block_id = []
838 839
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
840
            table_opt_block = self._create_table_optimize_block(
841
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
842
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
843
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
844
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
845 846
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
847

T
tangwei12 已提交
848
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
849 850
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
851

852
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
853 854
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
855 856 857 858 859 860
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
861
        attrs = {
862
            "optimize_blocks": optimize_blocks,
863 864 865
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
866
            "grad_to_block_id": grad_to_block_id,
867
        }
T
tangwei12 已提交
868 869

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
870
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
871 872
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
873

T
tangwei12 已提交
874 875 876 877
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
878 879 880 881 882
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
883
            attrs=attrs)
884

T
tangwei12 已提交
885
        # add distributed attrs
886 887
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
888

W
Wu Yi 已提交
889
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
890 891
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
892 893
        return pserver_program

W
Wu Yi 已提交
894 895 896 897 898 899
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
900

W
Wu Yi 已提交
901 902 903 904
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
905 906
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
907 908
        return pserver_prog, pserver_startup

909 910
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
911
                            pserver_program=None,
912
                            startup_program=None):
T
typhoonzero 已提交
913
        """
W
Wu Yi 已提交
914 915
        **Deprecated**

T
typhoonzero 已提交
916 917 918
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
919 920 921

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
922 923
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
924
                when initalizing
925

Y
yi.wu 已提交
926 927
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
928 929
        """
        s_prog = Program()
W
Wu Yi 已提交
930
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
931
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
932 933 934 935 936 937 938 939 940 941 942
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
943
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
944
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
945
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
946 947 948 949
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
950
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
951 952
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
953 954 955 956 957 958 959 960 961 962
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
963 964

            if op_on_pserver:
965 966 967
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
968 969 970
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
971
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
972 973 974 975
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
976
                    attrs=op.all_attrs())
W
Wu Yi 已提交
977 978 979 980 981 982 983 984 985
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
986 987

        # add slice vars
988
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
989

T
typhoonzero 已提交
990 991
        return s_prog

T
tangwei12 已提交
992
    def _get_slice_vars_and_attrs(self, endpoint):
993
        slice_vars_and_attrs = {}
T
tangwei12 已提交
994
        block_suffix = "block"
995
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
996
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
997
            if not block_name:
998 999
                continue

T
tangwei12 已提交
1000
            block_idx = int(block_name.split(block_suffix)[1])
1001 1002
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1003
            skip_dim0 = 0
1004 1005
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1006
                skip_dim0 += slice_var.shape[0]
1007
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1008
        return slice_vars_and_attrs
1009

1010 1011
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1051
    def _init_splited_vars(self):
Y
yi.wu 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1075
        if self.config.slice_var_up:
Y
yi.wu 已提交
1076 1077
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1078 1079 1080
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1081
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1082 1083
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1084 1085 1086
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1087 1088 1089 1090
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1091 1092
        assert (len(grad_blocks) == len(param_blocks))

1093
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1094 1095
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1096
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1097 1098 1099 1100
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1101
        # dict(grad_splited_var -> param_splited_var)
1102
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1103 1104 1105
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1106
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1107
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1108 1109

        # create mapping of endpoint -> split var to create pserver side program
1110
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1120
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1121 1122
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1123
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1124
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1125 1126
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1127 1128
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1129 1130 1131 1132 1133 1134

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1135 1136
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1137
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1138 1139 1140
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1141 1142
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1143 1144
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1145 1146 1147
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1148
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1149
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1150 1151

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1152
                    self.all_out_emb_vars.append(out_var)
1153 1154

                    # delete lookup_table_op
1155
                    delete_ops(program.global_block(), [op])
1156 1157 1158
                    # break for loop
                    break

S
seiriosPlus 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1205
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1206
        # 2. add split_ids_op and send_op to send gradient to pservers
1207

1208 1209
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1210
        table_grad_name = grad_var_name(self.table_name)
1211 1212 1213 1214
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1215
                program.global_block()._insert_op(
1216 1217 1218 1219 1220
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1221 1222
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1223
                program.global_block()._insert_op(
1224
                    index=op_index + 2,
1225
                    type="send",
1226
                    inputs={'X': self.trainer_side_table_grad_list},
1227 1228 1229 1230 1231
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1232
                    attrs={
1233
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1234
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1235
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1236 1237 1238 1239 1240
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1241
                    })
1242 1243 1244 1245 1246 1247
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1248
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1274
        return prefetch_var_name_to_block_id
1275 1276

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1277
                                     pre_block_idx, grad_to_block_id):
1278
        # STEP: create table optimize block
1279
        table_opt_block = pserver_program._create_block(pre_block_idx)
1280
        # create table param and grad var in pserver program
1281 1282
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1283 1284
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1285 1286
        ][0]

Y
Yancey1989 已提交
1287 1288
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1289

T
tangwei12 已提交
1290
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1291 1292
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1293 1294 1295
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1296 1297
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1298
            shape=table_shape,
Y
Yancey1989 已提交
1299 1300 1301
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1302

1303 1304
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1305
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1306
            self.origin_program.global_block().vars[grad_var_name(
1307
                self.table_name)])
1308

1309 1310 1311
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1312

1313 1314 1315
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1316
            pserver_side_table_grad_list = [
1317 1318 1319 1320 1321 1322 1323 1324 1325
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1326
            # append sum op for pserver_side_table_grad_list
1327 1328
            table_opt_block.append_op(
                type="sum",
1329
                inputs={"X": pserver_side_table_grad_list},
1330 1331
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1332 1333
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1334
            origin_grad_name = grad_var.name
1335 1336
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1337 1338
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1339
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1340
            grad_var = pserver_program.global_block()._rename_var(
1341
                origin_grad_name, splited_grad_name)
1342 1343 1344 1345 1346 1347 1348

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1349
        # only support sgd now
1350 1351 1352
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1353
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1354

1355 1356 1357
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1358 1359
        return table_opt_block

T
tangwei12 已提交
1360 1361 1362 1363 1364
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1365
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1366
            name="kLookupTablePath",
T
tangwei12 已提交
1367 1368
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1369

W
Wu Yi 已提交
1370
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1371
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1372 1373 1374 1375
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1376
            attrs={'file_path': "none"})
T
tangwei12 已提交
1377 1378 1379

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1380 1381 1382 1383 1384
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1385
        Create vars for each split.
T
typhoonzero 已提交
1386 1387
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1388 1389 1390 1391
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1392
        Returns:
1393
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1394
                from original var name to each var split.
T
typhoonzero 已提交
1395
        """
1396 1397

        # varname->[(block_id, current_block_size)]
1398
        block_map = collections.OrderedDict()
1399

1400
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1401 1402
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1403
            if varname not in block_map:
T
typhoonzero 已提交
1404
                block_map[varname] = []
1405
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1406

M
minqiyang 已提交
1407
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1408
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1409
            if len(splited) == 1:
1410
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1411
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1412
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1413
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1414 1415 1416 1417 1418
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1419
                continue
T
typhoonzero 已提交
1420
            var_mapping[varname] = []
T
typhoonzero 已提交
1421 1422 1423 1424
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1425

T
typhoonzero 已提交
1426
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1427
                size = block[1]
M
minqiyang 已提交
1428
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1429 1430 1431
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1432
                new_var_name = ""
1433
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1434
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1435
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1436 1437
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1438
                                   (varname, i)
T
typhoonzero 已提交
1439
                var = program.global_block().create_var(
T
typhoonzero 已提交
1440 1441
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1442
                    dtype=orig_var.dtype,
1443
                    type=orig_var.type,
T
typhoonzero 已提交
1444
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1445
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1446
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1447
        return var_mapping
T
done  
typhoonzero 已提交
1448

1449
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1450 1451 1452 1453 1454 1455
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1456
            persistable=persistable)
T
done  
typhoonzero 已提交
1457

Y
Yancey1989 已提交
1458
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1459 1460 1461 1462
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1463
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1464
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1465 1466
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1467
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1468 1469 1470 1471
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1472 1473 1474 1475
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1476 1477 1478 1479
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1480
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1481 1482 1483 1484
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1485 1486 1487 1488
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1489 1490 1491
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1492

T
typhoonzero 已提交
1493 1494 1495 1496
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1497
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1510
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1511 1512
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1513 1514
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1515
                return param_shape
1516 1517 1518
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1519 1520 1521
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1522 1523
        elif op_type == "sgd":
            pass
1524 1525 1526 1527
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1528 1529
        return orig_shape

1530 1531
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1532
        orig_var_name = ""
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1543
        else:
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1566
            return None
1567 1568 1569 1570
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1571
        else:
1572
            merged_var_name = orig_varname
1573 1574

        merged_var = pserver_block.vars[merged_var_name]
1575 1576 1577
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1578
            for i in range(self.trainer_num):
1579
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1580
                                   (merged_var_name, i)
1581 1582 1583 1584
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1585 1586
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1587 1588 1589 1590 1591
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1592
        return merged_var
T
typhoonzero 已提交
1593

W
Wu Yi 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1656
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1657
                            grad_to_block_id, origin_program, merged_var):
1658
        program = optimize_block.program
T
typhoonzero 已提交
1659
        pserver_block = program.global_block()
1660
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1671 1672 1673 1674
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1675
        for key in opt_op.input_names:
T
typhoonzero 已提交
1676
            if key == "Grad":
W
Wu Yi 已提交
1677 1678 1679
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1690
            elif key == "Param":
W
Wu Yi 已提交
1691
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1692 1693
                if not param_block:
                    return
T
typhoonzero 已提交
1694
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1695
                    name=param_block.name,
T
typhoonzero 已提交
1696
                    persistable=True,
T
typhoonzero 已提交
1697 1698 1699
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1700
            elif key == "LearningRate":
1701
                # learning rate variable has already be created by non-optimize op,
1702
                # don't create it once again.
1703
                lr_varname = opt_op.input(key)[0]
1704
                if lr_varname in pserver_block.vars:
1705 1706 1707 1708 1709 1710 1711 1712 1713
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1714

T
typhoonzero 已提交
1715
        for key in opt_op.input_names:
1716
            new_shape = None
W
Wu Yi 已提交
1717
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1718
                continue
1719
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1720
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1721
            # update accumulator variable shape
1722 1723
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1724
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1725 1726 1727 1728 1729
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1730

1731 1732 1733 1734 1735 1736 1737
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1738
        # change output's ParamOut variable
1739 1740
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1741
        outputs["ParamOut"] = new_inputs["Param"]
1742
        optimize_block.append_op(
T
typhoonzero 已提交
1743 1744
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1745
            outputs=outputs,
G
gongweibao 已提交
1746
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1759
        grad_block = None
M
minqiyang 已提交
1760
        for _, g in six.iteritems(var_dict):
1761
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1762
                # skip per trainer vars
1763
                if g.name.find(".trainer_") == -1:
1764 1765 1766 1767 1768
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1769 1770
        return grad_block

Q
Qiyang Min 已提交
1771 1772 1773
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1774
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1775 1776 1777 1778
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1779
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1780 1781 1782

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1783
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1784 1785 1786 1787
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1788
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1789

Y
Yancey1989 已提交
1790
        return block.append_op(
G
gongweibao 已提交
1791
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1792 1793

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1794
        program = optimize_block.program
1795
        # Append the ops for parameters that do not need to be optimized/updated
1796 1797
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1798
        for key, varlist in six.iteritems(inputs):
1799 1800
            if not isinstance(varlist, list):
                varlist = [varlist]
1801 1802 1803
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1804
                # for inputs/outputs
1805
                grad_block = self._get_pserver_grad_param_var(
1806 1807
                    var, program.global_block().vars)
                if grad_block:
1808
                    varlist[i] = grad_block
1809
                elif var.name not in program.global_block().vars:
1810 1811 1812 1813 1814
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1815

1816 1817
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1818
        for key, varlist in six.iteritems(outputs):
1819 1820
            if not isinstance(varlist, list):
                varlist = [varlist]
1821 1822 1823
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1824 1825
                    var, program.global_block().vars)
                if grad_block:
1826
                    varlist[i] = grad_block
1827
                elif var.name not in program.global_block().vars:
1828 1829 1830 1831 1832
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1833

Y
Yancey1989 已提交
1834
        return optimize_block.append_op(
T
typhoonzero 已提交
1835
            type=opt_op.type,
T
typhoonzero 已提交
1836 1837
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1838
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1839

1840 1841 1842 1843
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1844
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1845
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1846 1847 1848 1849 1850 1851
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1852 1853
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1854 1855 1856 1857 1858 1859
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1860
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1861
        if "Param" in op.input_names and \
T
tangwei12 已提交
1862
                "LearningRate" in op.input_names:
1863 1864 1865 1866 1867 1868 1869
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1870
        if op.input("Param")[0] in param_names:
1871 1872 1873
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1874
                param = op.input("Param")[0]
T
typhoonzero 已提交
1875
                if same_or_split_var(n, param) and n != param:
1876 1877 1878
                    return True
            return False

T
typhoonzero 已提交
1879
    def _get_input_map_from_op(self, varmap, op):
1880
        """Returns a dict from op input name to the vars in varmap."""
1881
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1893
        """Returns a dict from op output name to the vars in varmap."""
1894
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1904 1905

    def _get_lr_ops(self):
1906 1907 1908
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1909 1910 1911 1912
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1913 1914 1915 1916 1917
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1918 1919 1920 1921
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1922
            if self._is_optimizer_op(op):
1923 1924 1925 1926
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1927
        block = self.origin_program.global_block()
1928 1929 1930 1931 1932
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1933

1934 1935 1936 1937 1938
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1939
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1940 1941 1942 1943 1944 1945
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1946 1947
                    # we only need to append op for once
                    break
1948
        return lr_ops
Y
Yancey1989 已提交
1949

W
Wu Yi 已提交
1950 1951 1952 1953 1954
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1955 1956
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1957 1958 1959
            return True
        return False

Y
Yancey1989 已提交
1960
    def _get_optimize_pass(self):
1961
        """
1962
        Get optimizer operators, parameters and gradients from origin_program
1963 1964 1965 1966
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1967 1968 1969
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1970 1971
        # tmp set to dedup
        optimize_params = set()
1972
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1973
        for op in block.ops:
W
Wu Yi 已提交
1974
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1975
                opt_ops.append(op)
1976 1977 1978 1979 1980 1981
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1982 1983
                        params_grads.append([
                            origin_var_dict[param_name],
1984
                            origin_var_dict[grad_name]
1985
                        ])
Y
Yancey1989 已提交
1986 1987 1988
            else:
                pass
        return opt_ops, params_grads