pybind.cc 28.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16 17 18 19 20 21
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
24 25 26 27 28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
30
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
33
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
35
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/enforce.h"
38
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
39 40 41 42
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
43 44
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
45
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
47

48
#include "paddle/fluid/string/to_string.h"
49

D
Dong Zhihong 已提交
50
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
51 52 53
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
54 55
#endif

Q
Qiao Longfei 已提交
56 57 58
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

59
namespace paddle {
60
namespace pybind {
61
bool IsCompiledWithCUDA() {
62
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
63 64 65 66 67 68
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
69
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
70
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
71 72 73 74 75 76
  return true;
#else
  return false;
#endif
}

77 78
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
79

80 81 82 83
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

84
  BindException(&m);
Y
Yu Yang 已提交
85

86 87 88
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
89
      .def("get_dims",
90
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
91
      .def("set_dims",
Q
qijun 已提交
92
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
93
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
94
           })
D
dzhwinter 已提交
95 96 97 98
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
99
      .def("alloc_float",
D
dzhwinter 已提交
100
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102
           })
Q
qijun 已提交
103
      .def("alloc_float",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
106 107
           })
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
110
           })
Q
qijun 已提交
111
      .def("alloc_int",
D
dzhwinter 已提交
112
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<int>(place);
Q
qijun 已提交
114
           })
C
chengduoZH 已提交
115 116 117 118 119 120 121 122
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
123 124
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
125
      .def("set", PyCPUTensorSetFromArray<double>)
126
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
127
      .def("set", PyCPUTensorSetFromArray<bool>)
128
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
129
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
130
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
131 132
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
133
      .def("set", PyCUDATensorSetFromArray<double>)
134
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
135
      .def("set", PyCUDATensorSetFromArray<bool>)
136
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
137
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
C
chengduoZH 已提交
138 139 140 141 142 143
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
144
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qijun 已提交
145
#endif
146
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
147 148 149 150 151
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
152

153
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
154 155
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
156 157 158 159 160 161 162 163 164 165 166 167 168 169
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
170
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
171 172 173 174 175
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
176
      .def("set_lod",
177
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
178
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
179
             LoD new_lod;
180 181
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
182 183
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
184
             self.set_lod(new_lod);
D
dangqingqing 已提交
185
           })
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
211
      // Set above comments of set_lod.
212 213 214 215 216 217 218 219 220 221 222 223 224
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
225 226
      });

Q
qijun 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
240 241 242 243 244 245 246 247 248
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
249 250 251 252 253 254 255 256 257 258 259
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
260

261
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
262 263 264

All parameter, weight, gradient are variables in Paddle.
)DOC")
265
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
266
      .def("set_int",
267 268
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
269 270 271 272 273 274 275
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
276
      .def("get_tensor",
277 278
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
279 280
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
281 282 283
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
284 285 286 287 288
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
289 290 291
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
292 293 294 295 296 297 298
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
299 300 301 302 303
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
304
           py::return_value_policy::reference);
305

Y
Refine  
Yu Yang 已提交
306
  py::class_<framework::ReaderHolder>(m, "Reader", "")
307
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
308

S
sneaxiy 已提交
309 310 311 312 313
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
  py::class_<LoDTensorBlockingQueue>(m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
314
      .def("push",
S
sneaxiy 已提交
315
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
316
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
317
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
318
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
319
           })
S
sneaxiy 已提交
320 321 322 323
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
324

S
sneaxiy 已提交
325
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
326
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
327 328 329 330 331 332 333 334 335 336 337
           const std::vector<std::vector<int64_t>> &shapes)
            -> LoDTensorBlockingQueue * {
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
              return holder->GetQueue().get();
            },
S
sneaxiy 已提交
338 339
        py::return_value_policy::reference);

340
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
341
      .def("var",
342
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
343
             return self.Var(name);
Y
Yu Yang 已提交
344
           },
345
           py::return_value_policy::reference)
346
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
347
      .def(py::init<>())
348
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
349
           py::return_value_policy::reference)
Y
Yu Yang 已提交
350
      .def("drop_kids", &Scope::DropKids);
351

Y
Yu Yang 已提交
352 353
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
354 355
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
356 357 358 359 360 361 362 363 364 365
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
366 367
    return ret_values;
  });
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
384
  m.def("prune", [](const ProgramDesc &origin,
385
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
386
    ProgramDesc prog_with_targets(origin);
387
    for (const auto &t : targets) {
388
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
389
    }
390
    proto::ProgramDesc pruned_desc;
391
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
392
    return new ProgramDesc(pruned_desc);
393
  });
Y
Yu Yang 已提交
394
  m.def("inference_optimize", [](ProgramDesc &origin) {
395
    proto::ProgramDesc pruned_desc;
396
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
397
    return new ProgramDesc(pruned_desc);
398
  });
F
fengjiayi 已提交
399 400
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
401 402 403
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
404 405
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
406
  // clang-format off
Y
Yu Yang 已提交
407
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
408 409
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
410
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
411 412 413
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
414
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
415
                      -> paddle::platform::DeviceContext* {
416
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
417
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
418
#else
Q
qijun 已提交
419
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
420
#endif
C
chengduoZH 已提交
421 422 423 424 425 426 427 428 429 430 431
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
432 433 434 435
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
436
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
437
      .def(py::init<int>())
D
dzhwinter 已提交
438
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
439

440 441 442
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
443

C
chengduoZH 已提交
444 445 446 447
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
448 449 450 451 452 453 454
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
455
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
456
             self = gpu_place;
C
chengduoZH 已提交
457 458
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
459 460
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
461
      });
Y
Yu Yang 已提交
462

Y
Yu Yang 已提交
463 464 465
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
466
                    proto::OpDesc desc;
Y
Yu Yang 已提交
467 468 469 470 471
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
472
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
473
                  })
474
      .def("run",
475
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
476 477 478
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
479
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
480 481 482 483 484
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
485 486 487 488 489 490 491
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
492 493
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
494
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
495
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
496 497 498 499
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
500

F
fengjiayi 已提交
501
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
502
      .def(py::init<const platform::Place &>())
W
Wu Yi 已提交
503
#ifdef PADDLE_WITH_DISTRIBUTE
Y
Yancey1989 已提交
504 505
      .def("begin_pass", &Executor::BeginPass)
      .def("end_pass", &Executor::EndPass)
W
Wu Yi 已提交
506
#endif
S
sneaxiy 已提交
507 508 509 510 511
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
512

D
dzhwinter 已提交
513
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
514
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
515 516
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
517

518
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
519
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
520 521 522 523 524 525
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
526

527
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
528
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
529

530 531 532 533 534
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
535

Y
Yu Yang 已提交
536 537 538 539 540 541 542 543 544
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
562 563 564
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
565
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
566
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
567
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
568 569 570 571

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
572
#endif
Y
Yu Yang 已提交
573

574 575 576 577
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
578
      .value("kAll", platform::ProfilerState::kAll)
579 580 581 582 583 584 585 586 587 588 589 590 591
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
592
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
593
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
594

Y
yuyang18 已提交
595
  // -- python binds for parallel executor.
Y
yuyang18 已提交
596 597 598 599 600 601 602 603 604 605
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
  py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
      .def(py::init())
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
606 607 608 609
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
610 611 612 613 614 615
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
616 617 618 619 620 621 622 623
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
624
          });
Y
yuyang18 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
650 651 652 653 654 655
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
F
fengjiayi 已提交
656 657 658 659 660
          })
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
          [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; });
Y
yuyang18 已提交
661 662 663 664

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
665
                  const std::string &, Scope *, std::vector<Scope *> &,
666 667
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yancey1989 已提交
668
      .def("bcast_params", &ParallelExecutor::BCastParamsToDevs)
Y
Yu Yang 已提交
669 670 671 672
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
673 674 675 676 677
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
678 679 680 681
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
682 683 684 685 686 687
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
688

689
  BindRecordIOWriter(&m);
690
  return m.ptr();
L
Luo Tao 已提交
691
}
692
}  // namespace pybind
693
}  // namespace paddle