layers.py 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
28

C
chengduo 已提交
29
from . import parallel_helper
X
Xin Pan 已提交
30
from .. import unique_name
31
from paddle.fluid import core
32
from .layer_object_helper import LayerObjectHelper
33
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
34
from .base import program_desc_tracing_guard, param_guard, in_declarative_mode, _convert_into_variable
35
from paddle.fluid import framework
36
from ..param_attr import ParamAttr
37
from paddle.fluid.executor import Executor, global_scope
38
from paddle.fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
39
from paddle.fluid.framework import _current_expected_place as _get_device
40
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
41
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
42
import paddle.utils.deprecated as deprecated
43

44
__all__ = ['Layer']
45

46 47 48 49 50 51 52 53
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

54

55 56 57 58 59 60 61 62 63 64 65
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
82
class Layer(object):
83 84
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
85

86
    Parameters:
87 88
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
89 90 91
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
92
        dtype(str, optional): data type of this parameter.
93 94
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
95
                Default: "float32"
96

97 98
    Returns:
        None
X
Xin Pan 已提交
99
    """
X
Xin Pan 已提交
100

101
    def __init__(self, name_scope=None, dtype="float32"):
102
        self.training = True
103
        if name_scope is None:
104 105
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
106
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
107
        self._built = False
M
minqiyang 已提交
108
        self._dtype = dtype
109
        self._init_in_dynamic_mode = framework.in_dygraph_mode()
110

X
Xin Pan 已提交
111
        self._parameters = collections.OrderedDict()
112 113 114
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
115
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
116
        self._loaddict_holder = collections.OrderedDict()
117

118 119 120 121
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

122 123 124
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

125 126 127 128
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()

M
minqiyang 已提交
129
    def train(self):
130 131 132 133 134 135
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

160
        """
161 162 163 164 165
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().train_mode()
166 167 168
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
169
            layer.training = True
M
minqiyang 已提交
170 171

    def eval(self):
172 173 174 175 176 177
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

201
        """
202 203 204 205 206
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
        if in_dygraph_mode():
            framework._dygraph_tracer().eval_mode()
207 208 209
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
210
            layer.training = False
M
minqiyang 已提交
211

L
LielinJiang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
228

L
LielinJiang 已提交
229 230 231 232 233
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
234
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
235 236 237 238 239 240 241
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
242
        for layer in self.children():
L
LielinJiang 已提交
243 244 245 246 247 248
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
249
    def full_name(self):
250
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
251

252 253
        Returns:
            str: full name of this layer.
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
271 272 273
        """
        return self._full_name

274 275 276 277 278
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
279

280 281 282 283 284 285 286 287 288 289 290
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

291 292 293 294 295 296
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
297

298 299
                    # change the output
                    return output * 2
300

301
                linear = paddle.nn.Linear(13, 5)
302

303 304
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
305

306 307
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
308

309
                out0 = linear(in1)
310

311 312 313 314 315 316 317
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
318 319 320 321 322 323 324
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
325

326
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
327
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
328 329 330 331 332 333 334 335 336 337 338 339 340 341
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

342 343
                import paddle
                import numpy as np
344

345
                # the forward_pre_hook change the input of the layer: input = input * 2
346 347
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
348

349 350 351
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
352

353
                linear = paddle.nn.Linear(13, 5)
354

355 356
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
357

358 359 360
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
361

362 363
                # remove the hook
                forward_pre_hook_handle.remove()
364

365 366 367
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
368

369 370
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
371 372 373 374 375
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

376 377
    def create_parameter(self,
                         shape,
378
                         attr=None,
379
                         dtype=None,
380 381
                         is_bias=False,
                         default_initializer=None):
382
        """Create parameters for this layer.
383

384
        Parameters:
385
            shape(list): Shape of the parameter.
386 387
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
388
                If set str, it can be "bool",  "float16", "float32", "float64",
389 390
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
391
            default_initializer(Initializer, optional): the default initializer for this parameter.
392
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
393
                for non-bias and bias parameter, respectively. Default: None.
394

395
        Returns:
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

417
        """
H
hong 已提交
418 419 420 421
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
422 423
                                             default_initializer)

W
wanghuancoder 已提交
424 425 426 427
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
428
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
429 430 431
        """

        Create Tensor for this layer.
432

433
        Parameters:
W
wanghuancoder 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
454

W
wanghuancoder 已提交
455
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
456

W
wanghuancoder 已提交
457 458 459
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
460

W
wanghuancoder 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
485
            dtype(str, optional): data type of this parameter.
486 487
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
488
                If set None, it will be "float32". Default: None
489

490
        Returns:
W
wanghuancoder 已提交
491
            Tensor, created Tensor.
492 493 494 495 496 497 498 499 500 501 502 503

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
504

W
wanghuancoder 已提交
505
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
506

507 508 509
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
510

511 512
                        return out

513 514 515 516 517 518 519 520
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
521 522 523 524
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
525

X
polish  
Xin Pan 已提交
526
    def parameters(self, include_sublayers=True):
527
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
528

529
        Returns:
530 531 532 533 534 535 536 537 538 539
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
540
        """
541 542 543 544 545
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
546
        return ret
X
Xin Pan 已提交
547

548 549 550 551 552 553 554 555 556
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

557
                import paddle
558

559 560 561 562 563
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
564

565
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

581
                import paddle
582

583 584 585 586 587 588 589
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
590 591 592 593 594 595 596 597

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
598
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
599 600
        """Returns a list of sub layers.

601
        Parameters:
J
Jiabin Yang 已提交
602
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
603

604 605
        Returns:
            list of Layer : a list of sub layers.
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
626
        """
627 628
        ret = [
            layer
J
Jiabin Yang 已提交
629
            for _, layer in self.named_sublayers(include_self=include_self)
630
        ]
X
Xin Pan 已提交
631 632
        return ret

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

648
                import paddle
649

650 651 652 653 654
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
655 656 657 658 659

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
660
            include_self=True) if include_sublayers else zip([prefix], [self])
661 662 663 664 665 666 667 668 669
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
670
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
671 672 673 674 675 676 677
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
678
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
679 680 681 682 683 684 685

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

686
                import paddle
687

688 689 690 691 692
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
693 694 695 696 697 698 699

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
700 701 702 703 704 705 706 707
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
            for p, l in layer.named_sublayers(
                    prefix=layer_prefix, include_self=True,
                    layers_set=layers_set):
                yield p, l
708

709
    def register_buffer(self, name, tensor, persistable=True):
710
        """
711
        Registers a tensor as buffer into the layer.
712

713
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
714 715 716 717 718 719 720 721 722 723
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
724
            tensor (Tensor): the tensor to be registered as buffer.
725 726 727 728 729
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
730

731 732 733 734
        Examples:
            .. code-block:: python

                import numpy as np
735
                import paddle
736

737 738 739 740 741 742 743
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
744 745 746 747 748 749 750 751 752 753 754

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
755 756 757 758
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
759 760 761 762
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
0
0x45f 已提交
763 764
        elif tensor is not None and not (type(tensor) == core.VarBase or
                                         type(tensor) == core.eager.Tensor):
765 766
            raise TypeError(
                "The registered buffer should be a core.VarBase, but received {}.".
767
                format(type(tensor).__name__))
768
        else:
769
            self._buffers[name] = tensor
770 771 772 773 774 775 776 777 778 779 780 781 782
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

798 799 800 801 802 803 804 805 806 807
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
808
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
809 810 811 812 813 814 815

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
816
            (string, Tensor): Tuple of name and tensor
817 818 819 820 821

        Examples:
            .. code-block:: python

                import numpy as np
822
                import paddle
823

824 825 826 827
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
828

829 830 831 832 833
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
834

835
                model = paddle.nn.Sequential(fc1, fc2)
836

837 838 839
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
840 841 842 843 844

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
845
            include_self=True) if include_sublayers else zip([prefix], [self])
846 847 848 849 850 851 852 853 854
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
855
    def clear_gradients(self):
856 857
        """
        Clear the gradients of all parameters for this layer.
858

859 860
        Returns:
            None
861

862 863 864
        Examples:
            .. code-block:: python

865
                import paddle
866 867
                import numpy as np

868 869 870 871 872 873 874 875 876
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
877 878

        """
X
Xin Pan 已提交
879
        for p in self.parameters():
880 881
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
882

883
    def _build_once(self, *args, **kwargs):
884 885
        pass

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
                if parallel_helper._is_data_parallel_mode(
                ) and paddle.is_compiled_with_xpu():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())

            self._built = True

        outputs = self.forward(*inputs, **kwargs)

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

917
    def __call__(self, *inputs, **kwargs):
918
        return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
919

920
    def forward(self, *inputs, **kwargs):
921 922 923 924 925 926 927 928
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
929
        raise NotImplementedError
X
Xin Pan 已提交
930 931 932 933

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
934 935 936
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

937
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
938

939 940 941
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
942
        Returns:
943
            Layer: the sublayer passed in.
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
970
        """
J
Jiabin Yang 已提交
971
        assert (isinstance(sublayer, Layer) or sublayer == None)
972

X
Xin Pan 已提交
973 974 975 976 977 978
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

979
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
980

981 982 983
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
984
        Returns:
985
            Parameter: the parameter passed in.
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1005
        """
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1024
            raise TypeError(
1025 1026 1027 1028 1029
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1030

1031 1032 1033
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1034

1035
                parameter.set_value(self._loaddict_holder[parameter.name])
1036

1037
            self._parameters[name] = parameter
X
Xin Pan 已提交
1038 1039
        return parameter

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
            raise TypeError("attrs should be type(dict), but received {}".
                            format(type(attrs).__name__))

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False)

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1088 1089 1090 1091 1092 1093
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1094
    def __getattr__(self, name):
1095 1096 1097
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1098
                if in_declarative_mode():
1099
                    return _convert_into_variable(self._parameters[name])
1100 1101 1102 1103 1104 1105 1106 1107
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1108
                if in_declarative_mode():
1109
                    return _convert_into_variable(_buffers[name])
1110 1111
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1112 1113

    def __setattr__(self, name, value):
S
songyouwei 已提交
1114 1115 1116 1117 1118
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1119 1120
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1121
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1122 1123 1124 1125
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1126
            if len(self._loaddict_holder) > 0:
1127
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1128 1129 1130 1131
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1132
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1133
            params[name] = value
1134 1135 1136 1137 1138 1139
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1140
        else:
1141
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1142
            if isinstance(value, Layer):
1143 1144 1145 1146 1147
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1148
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1149 1150 1151 1152 1153 1154 1155 1156
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1157
                _buffers = self.__dict__.get('_buffers', None)
1158 1159
                if type(value) == core.VarBase or \
                    type(value) == core.eager.Tensor:
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1172
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1173 1174 1175 1176
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1177 1178 1179 1180
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1181 1182 1183 1184 1185 1186 1187
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
                                'not allowed to be set to Variable when self.{0} is None.'.
                                format(name))
                        elif _buffers[name] is None or type(
                                getattr(self, name)) == core.VarBase:
1188 1189
                            _buffers[name] = assign(value)
                        else:
1190
                            assign(value, getattr(self, name))
1191
                    elif value is not None:
1192 1193 1194
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1195 1196 1197 1198
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1199 1200
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1201 1202 1203 1204 1205 1206

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1207 1208 1209
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1210 1211 1212
        else:
            object.__delattr__(self, name)

1213 1214
    def __dir__(self):
        """
W
wanghuancoder 已提交
1215
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1216 1217

        Examples:
1218 1219 1220
            .. code-block:: python
                import paddle
                import numpy as np
1221

1222 1223 1224 1225 1226
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1227
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1228 1229
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1230

1231 1232 1233 1234
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1276 1277 1278 1279 1280
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1281 1282 1283
    def _obtain_parameters_buffers(self,
                                   destination=None,
                                   include_sublayers=True,
S
ShenLiang 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
                                   structured_name_prefix=""):
        """
        The difference from state_dict() is that state_dict_hook will not be called, 
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
                    destination = destination_temp
        return destination

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
                         include_non_persistable_buffer=False):
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
                            include_non_persistable_buffer))
                    destination = destination_temp
        for state_dict_hook in self._state_dict_hooks.values():
            hook_result = state_dict_hook(destination)
            if hook_result is not None:
                destination = hook_result

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
                             structured_name_prefix=""):
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=True)

H
hong 已提交
1384 1385 1386 1387
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1388
        '''
1389
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1390

1391
        Parameters:
1392 1393
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1394

H
hong 已提交
1395
        Retruns:
1396
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1397 1398

        Examples:
1399 1400
            .. code-block:: python

1401
                import paddle
H
hong 已提交
1402

1403 1404 1405 1406
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1407 1408

        '''
1409 1410 1411 1412 1413
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=False)
1414

1415
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1416
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1417
        '''
1418
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1419

1420
        Parameters:
1421
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1422
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1423
                                                  Default: True
H
hong 已提交
1424 1425 1426 1427
        Returns:
            None

        Examples:
1428 1429
            .. code-block:: python

1430
                import paddle
1431

1432
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1433

1434
                state_dict = emb.state_dict()
1435 1436
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1437
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1438

H
hong 已提交
1439 1440
        '''

1441 1442 1443 1444 1445
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
S
Steffy-zxf 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

        if in_dygraph_mode():
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1476

1477 1478 1479 1480 1481 1482 1483
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1484 1485 1486 1487
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1502 1503 1504 1505 1506
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1507 1508 1509 1510
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1511
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1512

1513
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1514
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1515
            
C
chentianyu03 已提交
1516
        Returns:
1517
            self
C
chentianyu03 已提交
1518 1519 1520 1521

        Examples:
            .. code-block:: python

1522
                # required: skip
C
chentianyu03 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        '''
        return self._to_impl(
            device=device,
            dtype=dtype,
            blocking=blocking,
            include_sublayers=True)

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
            self._buffers[key] = func(buf, device, dtype, blocking)

1574 1575
        self._dtype = dtype

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    def _to_impl(self,
                 device=None,
                 dtype=None,
                 blocking=None,
                 include_sublayers=True):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

        Returns:
            self
C
chentianyu03 已提交
1598 1599 1600 1601

        '''

        if device is None and dtype is None and blocking is None:
1602
            return self
C
chentianyu03 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

1628
            if type(dtype) is not VarDesc.VarType:
1629 1630
                dtype = convert_np_dtype_to_dtype_(dtype)

1631 1632 1633
            # 1. gpu place need to determine whether the memory is sufficient for allocation:
            if t.place.is_gpu_place():
                # for gpu, minimum memory allocation unit is 256 bytes.
1634
                size_dtype = core.size_of_dtype(dtype)
1635 1636 1637
                # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
1638 1639
                    (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
                gpu_memory_available = core.gpu_memory_available()
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy param / Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(),
                                        blocking)  # k-v type will error
                    # Release mem of t
                    t.value().get_tensor()._clear()
                else:
                    t_used = t
            else:
                t_used = t

            # 2. cast param / Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
1653 1654
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
1655
                    t_casted = t_used.cast(dtype=dtype)
1656
            else:
1657 1658 1659
                t_casted = t_used

            # 3. Copy casted cpu param / Tensor to device
1660 1661 1662 1663
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
1664 1665 1666 1667 1668

            # 4. share Tensor to origin param / Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)
C
chentianyu03 已提交
1669

1670
            return t
C
chentianyu03 已提交
1671

1672 1673
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1674
            self._apply(transform, device, dtype, blocking, include_sublayers)
1675

1676
        self._dtype = dtype
1677
        return self
C
chentianyu03 已提交
1678

1679 1680 1681
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict