creation.py 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26 27
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
28
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
29

30
# TODO: define functions to get create a tensor  
31 32
from ..fluid.layers import crop_tensor  #DEFINE_ALIAS
from ..fluid.layers import fill_constant  #DEFINE_ALIAS
33
from ..fluid.layers import linspace  #DEFINE_ALIAS
34
import paddle
35

W
wangchaochaohu 已提交
36
__all__ = [
37
    'to_tensor',
38 39 40 41
    'crop_tensor',
    'diag',
    'fill_constant',
    #       'get_tensor_from_selected_rows',
42
    'linspace',
43 44 45 46
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
47
    'arange',
48
    'eye',
W
wangchaochaohu 已提交
49
    'full',
P
Pei Yang 已提交
50
    'full_like',
W
WuHaobo 已提交
51 52
    'triu',
    'tril',
53
    'meshgrid'
W
wangchaochaohu 已提交
54 55 56
]


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
    and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` 
    and the current place is cpu, no copy will be performed.

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
74
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
75
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
76 77
            'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
78 79 80 81 82
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
83
        Tensor: A Tensor or ComplexTensor constructed from ``data`` .
84 85 86 87 88

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
89
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
90 91 92 93 94 95 96

    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
97
        paddle.disable_static()
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor: generated_tensor_0
        # - place: CUDAPlace(0)   # allocate on global default place CPU:0
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int64_t
        # - data: [1]

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
        # Tensor: generated_tensor_01
        # - place: CPUPlace
        # - shape: [1]
        # - layout: NCHW
        # - dtype: int
        # - data: [1]

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
        # Tensor: generated_tensor_1
        #   - place: CUDAPinnedPlace
        #   - shape: [2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [1.1 2.2]

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
        # Tensor: generated_tensor_2
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: double
        #   - data: [0.1 0.2 0.3 0.4]

135
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # ComplexTensor[real]: generated_tensor_0.real
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 2 3 4]
        # ComplexTensor[imag]: generated_tensor_0.imag
        #   - place: CUDAPlace(0)
        #   - shape: [2, 2]
        #   - layout: NCHW
        #   - dtype: float
        #   - data: [1 0 2 0]
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))
191 192 193 194 195 196 197 198 199 200 201 202
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
203 204

    if not np.iscomplexobj(data):
205
        if dtype and convert_dtype(dtype) != data.dtype:
206
            data = data.astype(dtype)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=True,
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
            zero_copy=True,
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
            zero_copy=True,
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


230
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
231
    """
S
swtkiwi 已提交
232

233 234
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
235

P
Pei Yang 已提交
236
    Args:
237 238
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
239
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
240 241
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
242 243
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
244
    Returns:
245
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
246
    
247
    Raises:
248 249
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
250
    
P
Pei Yang 已提交
251 252
    Examples:
        .. code-block:: python
253

P
Pei Yang 已提交
254 255
          import paddle
          import numpy as np
256
          
257
          paddle.disable_static()  # Now we are in imperative mode 
258
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
259
          output = paddle.full_like(input, 2.0)
260 261
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
262 263 264
    """

    if dtype is None:
265
        dtype = x.dtype
266
    else:
267 268 269 270 271
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
272

273
    helper = LayerHelper("full_like", **locals())
274 275 276
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
277 278
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
279
                'full_like/zeros_like/ones_like')
280
    out = helper.create_variable_for_type_inference(dtype=dtype)
281

P
Pei Yang 已提交
282 283
    helper.append_op(
        type='fill_any_like',
284
        inputs={'X': [x]},
285
        attrs={'value': fill_value,
286
               "dtype": dtype},
P
Pei Yang 已提交
287
        outputs={'Out': [out]})
288
    out.stop_gradient = True
P
Pei Yang 已提交
289 290 291
    return out


292
def ones(shape, dtype=None, name=None):
293
    """
S
swtkiwi 已提交
294

295 296 297
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
298
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
299
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
300 301 302
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
303
    Returns:
304
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
305

306
    Raises:
307
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
308 309
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
310
    
311 312 313
    Examples:
        .. code-block:: python

314
          import paddle 
315
          paddle.disable_static()
316
          
317
          # default dtype for ones OP
318 319 320 321 322 323 324 325 326
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
327
          # shape is a Tensor
328 329 330 331
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
332
    """
333 334 335
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
336 337


338
def ones_like(x, dtype=None, name=None):
339
    """
340
	:alias_main: paddle.ones_like
341
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
342

343 344
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
345 346

    Args:
347 348 349 350 351 352 353 354 355 356
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

357
    Returns:
358 359 360 361 362 363
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
364 365 366 367

    Examples:
        .. code-block:: python

368
            import paddle
369

370
            paddle.disable_static()
371

372
            x = paddle.to_tensor([1,2,3])
373 374
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
375

376 377
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
378 379


380
def zeros(shape, dtype=None, name=None):
381 382 383 384
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
385
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
386
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
387 388 389
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
390 391

    Returns:
392
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
393

394
    Raises:
395
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None.
396 397 398
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
    
399 400 401 402
    Examples:
        .. code-block:: python

          import paddle
403
          
404
          paddle.disable_static()  # Now we are in imperative mode
405 406 407 408 409 410 411 412 413 414
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
          shape = paddle.fill_constant(shape=[2], dtype='int32', value=2)
415
          data3 = paddle.zeros(shape=shape, dtype='int32') 
416 417
          # [[0 0]
          #  [0 0]]
418
    """
419 420 421
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
422 423


424
def zeros_like(x, dtype=None, name=None):
425
    """
426
	:alias_main: paddle.zeros_like
427
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
428

429 430
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
431 432

    Args:
433 434 435 436 437 438
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
439 440 441
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
442 443

    Returns:
444 445
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
446

447
    Raise:
448 449
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
450

451 452 453
    Examples:
        .. code-block:: python

454
            import paddle
455

456
            paddle.disable_static()
457

458
            x = paddle.to_tensor([1,2,3])
459 460
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
461

462 463
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
464 465


466
def eye(num_rows, num_columns=None, dtype=None, name=None):
467
    """
468
    
469
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
470

471
    Args:
472 473
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
474
            If None, default: num_rows.
W
wangchaochaohu 已提交
475
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
476 477
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
478 479
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
480

481
    Returns:
482
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
483 484
    
    Raises:
485 486
        TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None.
        TypeError: The ``num_columns`` must be non-negative int.
487

488 489
    Examples:
        .. code-block:: python
490
          
491
          import paddle
492

493
          paddle.disable_static()  # Now we are in imperative mode
494
          data = paddle.eye(3, dtype='int32')
495 496 497
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
498
          data = paddle.eye(2, 3, dtype='int32')
499 500
          # [[1 0 0]
          #  [0 1 0]]
501 502
    """

503 504 505
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
506
        num_columns = num_rows
507 508 509 510 511
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
512 513


514
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
515
    """
S
swtkiwi 已提交
516

517
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
518 519
    
    Args:
520
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
521 522
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
523 524 525
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
526
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
527
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
528
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
529 530 531
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
532
    Returns:
533
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
534 535

    Raises:
536 537 538
        TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64.
        TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must
            be int32 or int64 when the it's a Tensor
539
    
W
wangchaochaohu 已提交
540 541 542
    Examples:
        .. code-block:: python

543
          import paddle
W
wangchaochaohu 已提交
544

545
          paddle.disable_static()  # Now we are in imperative mode
546 547 548
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
549

550
          # attr shape is a list which contains Tensor.
551
          positive_2 = paddle.fill_constant([1], "int32", 2)
552 553
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
554

555
          # attr shape is a Tensor.
556 557 558 559
          shape = paddle.fill_constant([2], "int32", 2)
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
560
          
561
          # attr fill_value is a Tensor.
562 563 564 565
          val = paddle.fill_constant([1], "float32", 2.0)
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
566 567 568 569 570
    """

    if dtype is None:
        dtype = 'float32'

571
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
572 573


574
def arange(start=0, end=None, step=1, dtype=None, name=None):
575
    """
576
	:alias_main: paddle.arange
577
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
578

579
    This OP returns a 1-D Tensor with spaced values within a given interval.
580

581 582
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
583

584 585
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
586 587

    Parameters:
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
606

607 608 609 610
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
611

612
    Raises:
613
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
614

615 616 617 618
    examples:

        .. code-block:: python

619
        import paddle
620

621
        paddle.disable_static()
622

623 624
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
625

626 627
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
628

629 630 631
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
632

633
        start_var = paddle.to_tensor([3])
634 635 636 637 638 639 640 641 642
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
643

644
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
645 646 647 648 649 650


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
651
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
652 653 654 655 656

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
657
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
681
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
682
    """
683 684
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
685

W
WuHaobo 已提交
686
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
687
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
688 689 690 691
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
692
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
693 694 695 696 697 698 699 700 701 702 703 704
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
705 706
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
707 708 709

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
710
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
711 712 713 714 715

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
716
            import paddle
W
WuHaobo 已提交
717 718 719 720 721 722

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

723
            paddle.disable_static()
Y
yaoxuefeng 已提交
724

725
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
726 727
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
728 729 730 731 732
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
733
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
734 735 736 737 738
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
739
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
740 741 742 743
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

744 745 746
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
747
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
748 749 750 751

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
752
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
753
    """
754 755
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
756

W
WuHaobo 已提交
757
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
758
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
759 760 761 762
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
763
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
764 765 766 767 768 769 770 771 772 773 774 775
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
776 777
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
778 779 780

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
781
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
782 783 784 785 786

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
787
            import paddle
W
WuHaobo 已提交
788 789 790 791 792

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
793

794
            paddle.disable_static()
W
WuHaobo 已提交
795 796

            # example 1, default diagonal
797
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
798
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
799 800 801 802 803
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
804
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
805 806 807 808 809
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
810
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
811 812 813 814 815
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
816 817
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
818
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
819 820

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
821 822


823
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
824
    """
825 826
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
827

828
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
829 830 831
    vector, and creates N-dimensional grids.
    
    Args:
832
        *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
833
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
834 835
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
         Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)

    Examples:
      .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          x = fluid.data(name='x', shape=[100], dtype='int32')
          y = fluid.data(name='y', shape=[200], dtype='int32')

          input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

          exe = fluid.Executor(place=fluid.CPUPlace())
855
          grid_x, grid_y = paddle.tensor.meshgrid(x, y)
S
suytingwan 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869
          res_1, res_2 = exe.run(fluid.default_main_program(),
                                 feed={'x': input_1,
                                       'y': input_2},
                                 fetch_list=[grid_x, grid_y])
     
          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

      .. code-block:: python

          #example 2: in dygraph mode

          import paddle
          import numpy as np
870
          
871
          paddle.disable_static()
S
suytingwan 已提交
872 873 874

          input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
          input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
875 876
          tensor_3 = paddle.to_tensor(input_3)
          tensor_4 = paddle.to_tensor(input_4)
877
          grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
S
suytingwan 已提交
878 879 880 881 882 883

          #the shape of grid_x is (100, 200)
          #the shape of grid_y is (100, 200)

    """

884 885
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
886
    if in_dygraph_mode():
887 888
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
889 890
        return out

891
    name = kwargs.get("name", None)
S
suytingwan 已提交
892 893
    helper = LayerHelper('meshgrid', **locals())

894 895
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
896

897
    for id, input_ in enumerate(args):
S
suytingwan 已提交
898 899 900 901
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

902
    num = len(args)
S
suytingwan 已提交
903
    out = [
904
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
905 906
        for i in range(num)
    ]
907 908
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
909 910

    return out
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
987 988 989 990 991 992 993
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out