distribute_transpiler.py 82.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127
class DistributeTranspilerConfig(object):
    """
T
Tink_Y 已提交
128 129 130 131 132 133 134 135
    Args:
        slice_var_up (bool): Do Tensor slice for pservers, default is True.
        split_method (PSDispatcher): RoundRobin or HashName can be used
          try to choose the best method to balance loads for pservers.
        min_block_size (int): Minimum splitted element number in block.
          According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
          We can use bandwidth effiently when data size is larger than 2MB.If you
          want to change it, please be sure you see the slice_variable function.
G
gongweibao 已提交
136 137 138 139 140
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
141
    enable_dc_asgd = False
W
Wu Yi 已提交
142 143
    # supported modes: pserver, nccl2
    mode = "pserver"
144
    print_log = False
W
Wu Yi 已提交
145
    wait_port = True
G
gongweibao 已提交
146 147


Y
gen rst  
yi.wu 已提交
148
class DistributeTranspiler(object):
Y
yi.wu 已提交
149 150 151 152
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
153
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
154

W
Wu Yi 已提交
155 156 157 158 159 160 161 162 163
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
164 165 166 167

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
181
                                                                pserver_program)
T
Tink_Y 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
196
    """
Y
Yancey1989 已提交
197

G
gongweibao 已提交
198 199 200 201 202 203 204 205 206
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

207 208 209
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
210 211 212
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
213 214 215 216
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
W
Wu Yi 已提交
217 218
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
219 220 221 222 223 224
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
W
Wu Yi 已提交
225 226
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
243
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
244 245 246 247
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
Q
Qiao Longfei 已提交
248 249
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
Q
Qiao Longfei 已提交
250 251 252
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
253
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
254
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
255 256 257
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
258
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
259
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
267

268 269 270 271 272
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
273
                  sync_mode=True,
W
Wu Yi 已提交
274 275
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
276
        """
Y
yi.wu 已提交
277 278 279 280 281 282 283
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
284 285
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
286 287
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
288 289 290
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
291
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
292 293
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
294 295 296
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
297 298 299
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
300 301
        if startup_program is None:
            startup_program = default_startup_program()
302
        self.origin_program = program
W
Wu Yi 已提交
303 304
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
305

W
Wu Yi 已提交
306 307 308 309 310 311
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
W
Wu Yi 已提交
312 313
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
314 315
            return

316 317 318 319 320 321 322
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
323
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
324 325
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
326
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
327
        self.grad_name_to_param_name = dict()
328 329
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
330
            self.grad_name_to_param_name[grad_var.name] = param_var.name
331

Q
Qiao Longfei 已提交
332
        # get all sparse update ops
Q
Qiao Longfei 已提交
333
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
334
            self.origin_program)
Q
Qiao Longfei 已提交
335
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
336 337
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
338 339 340 341 342 343
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

344
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
345
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
346
        self._init_splited_vars()
347

G
gongweibao 已提交
348
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
349
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
350
        send_vars = []
351 352 353 354 355 356

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
357
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
358

G
gongweibao 已提交
359
        if not self.config.slice_var_up:
360 361
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
362

363
        self.grad_name_to_send_dummy_out = dict()
364
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
365
            eplist = ps_dispatcher.dispatch(splited_vars)
366

G
gongweibao 已提交
367
            if not self.config.slice_var_up:
368 369
                assert (len(splited_vars) == 1)

370
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
371
            if len(splited_vars) == 1:
372
                splited_grad_varname = splited_vars[0].name
373 374
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
375 376
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
377
                        grad_varname]
Q
Qiao Longfei 已提交
378 379 380 381
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
382
            elif len(splited_vars) > 1:
383
                orig_var = program.global_block().vars[splited_grad_varname]
384 385
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
386
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
387
                index += 1
Y
Yancey1989 已提交
388 389
            else:
                AssertionError("Can not insert the send op by original "
390
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
391

W
Wu Yi 已提交
392 393
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
394
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
395

W
Wu Yi 已提交
396 397 398 399
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
400
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
401
                index=index + 1,
402
                type="send",
Y
update  
Yancey1989 已提交
403
                inputs={"X": splited_vars},
404
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
405 406
                attrs={
                    "epmap": eplist,
407
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
408 409 410 411
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
412
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
413
                })
Y
update  
Yancey1989 已提交
414 415
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
416 417

        if self.sync_mode:
W
Wu Yi 已提交
418 419
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
420 421 422 423
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
424
            input_deps = list(self.grad_name_to_send_dummy_out.values())
425

Y
Yancey1989 已提交
426 427
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
428
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
429
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
430 431
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
432 433
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
434
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
435
                })
Y
Yancey1989 已提交
436

G
gongweibao 已提交
437
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
438
        recv_vars = []
Y
update  
Yancey1989 已提交
439
        for _, var in enumerate(send_vars):
440
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
441
        ps_dispatcher.reset()
Y
Yancey1989 已提交
442 443
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
444
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
445 446
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
447

Y
Yancey1989 已提交
448
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
449
        all_recv_outputs = []
450
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
451
            eps = []
Q
Qiao Longfei 已提交
452
            table_names = []
Y
Yancey1989 已提交
453 454 455
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
456
                table_names.append(var.name)
W
Wu Yi 已提交
457 458 459 460
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
461
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
462
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
463

W
Wu Yi 已提交
464 465 466 467 468 469 470 471 472
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
473 474 475
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
476 477
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
478
            else:
Q
Qiao Longfei 已提交
479
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
480 481 482 483 484 485 486 487 488 489 490 491
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
492

Q
qiaolongfei 已提交
493
        if self.sync_mode:
W
Wu Yi 已提交
494
            # form a WAW dependency
Q
qiaolongfei 已提交
495 496 497
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
498
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
499 500
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
501
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
502 503
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
504

505
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
506 507
            if len(splited_var) <= 1:
                continue
508
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
509 510 511 512 513 514 515 516 517
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
518

G
gongweibao 已提交
519 520
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

521
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
522 523
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
524
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
525

W
Wu Yi 已提交
526
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
527 528 529 530 531 532
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
533
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
534
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
535
        lr_ops = self._get_lr_ops()
536
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
537 538
        delete_ops(self.origin_program.global_block(), lr_ops)

539 540
        # delete table init op
        if self.has_distributed_lookup_table:
541 542 543
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
544 545
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
546 547 548 549 550
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
551
            table_init_op = table_param_init_op[0]
552 553 554 555 556 557
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
558

559
        self.origin_program.__str__()
G
gongweibao 已提交
560

W
Wu Yi 已提交
561 562 563
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

564
        return self.origin_program
T
typhoonzero 已提交
565

W
Wu Yi 已提交
566
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
567 568 569 570
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
571
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
572
            eplist (list): A list of strings indicating
G
gongweibao 已提交
573 574 575 576

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
577
        startup_program = self.startup_program
G
gongweibao 已提交
578 579 580 581

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
582
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
603
                inputs={"X": []},
G
gongweibao 已提交
604 605 606 607 608 609
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
610 611
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
612 613 614
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
615
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
616 617 618 619 620
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
621
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
622
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
623 624
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
625
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
626
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
627 628 629 630 631 632 633 634 635 636
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
637 638 639 640 641 642 643 644
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
645 646
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
647
        Get parameter server side program.
648

Y
yi.wu 已提交
649 650
        Args:
            endpoint (str): current parameter server endpoint.
651

Y
yi.wu 已提交
652 653
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
654
        """
Y
yi.wu 已提交
655 656 657 658
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
T
typhoonzero 已提交
659 660
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
661
        pserver_program.random_seed = self.origin_program.random_seed
662
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
663 664 665 666 667 668 669 670
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
671 672 673 674 675
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
676 677 678 679 680 681 682 683 684
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
685
            if self.sync_mode and self.trainer_num > 1:
686
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
687 688 689 690 691 692 693 694 695
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
696

697 698 699
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
700
        # step 3
701
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
702 703 704
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
705
        # step 3.2
T
typhoonzero 已提交
706 707 708 709
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
710 711
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
712
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
713
        # step 3.3
W
Wu Yi 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
732
        # Iterate through the ops, and if an op and the optimize ops
733
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
734
        # append it into the sub program.
T
typhoonzero 已提交
735 736 737

        global_ops = []

Y
wip  
yi.wu 已提交
738 739
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
740
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
741
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
742
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
743
            elif op not in lr_ops:
Q
Qiyang Min 已提交
744
                self._append_pserver_non_opt_ops(block, op)
745 746 747 748 749 750

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
751

Y
Yancey1989 已提交
752
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
753 754 755 756 757 758 759 760
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
761
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
762 763 764

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
765
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
766 767

            # clone ops
Y
Yancey1989 已提交
768 769
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
770
                # clone sub_block of op
Y
Yancey1989 已提交
771
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
772 773

            # reset the block of op
W
Wu Yi 已提交
774
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
775

776
        # append lr decay ops to the child block if exists
777
        lr_ops = self._get_lr_ops()
778 779
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
780
        if len(lr_ops) > 0:
W
Wu Yi 已提交
781
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
782
                pserver_program.num_blocks - 1)
783
            optimize_blocks.append(lr_decay_block)
784
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
785
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
786
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
787 788
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
789

T
typhoonzero 已提交
790
        # append op to the current block
Q
qiaolongfei 已提交
791
        grad_to_block_id = []
Q
qiaolongfei 已提交
792
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
793
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
794
            per_opt_block = pserver_program._create_block(pre_block_idx)
795
            optimize_blocks.append(per_opt_block)
796
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
797
            # append grad merging ops before clip and weight decay
798 799
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
800
            for _, op in enumerate(self.optimize_ops):
801 802 803 804 805
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
806 807 808
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
809 810 811 812 813 814
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
815
                            op not in global_ops:
816 817 818 819 820
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
821

822
        # dedup grad to ids list
W
Wu Yi 已提交
823
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
824
        # append global ops
825
        if global_ops:
W
Wu Yi 已提交
826
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
827
                pserver_program.num_blocks - 1)
828
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
829
            for glb_op in global_ops:
X
Xi Chen 已提交
830
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
831
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
832

833
        # process distributed lookup_table
Q
qiaolongfei 已提交
834
        prefetch_var_name_to_block_id = []
835 836
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
837
            table_opt_block = self._create_table_optimize_block(
838
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
839
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
840
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
841
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
842 843
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
844

T
tangwei12 已提交
845
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
846 847
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
848

849
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
850 851
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
852 853 854 855 856 857
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
858
        attrs = {
859
            "optimize_blocks": optimize_blocks,
860 861 862
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
863
            "grad_to_block_id": grad_to_block_id,
864
        }
T
tangwei12 已提交
865 866

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
867
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
868 869
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
870

T
tangwei12 已提交
871 872 873 874
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
875 876 877 878 879
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
880
            attrs=attrs)
881

T
tangwei12 已提交
882
        # add distributed attrs
883 884
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
885

W
Wu Yi 已提交
886
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
887 888
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
889 890
        return pserver_program

W
Wu Yi 已提交
891 892 893 894 895 896
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
897

W
Wu Yi 已提交
898 899 900 901
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
902 903
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
904 905
        return pserver_prog, pserver_startup

906 907
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
908
                            pserver_program=None,
909
                            startup_program=None):
T
typhoonzero 已提交
910
        """
W
Wu Yi 已提交
911 912
        **Deprecated**

T
typhoonzero 已提交
913 914 915
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
916 917 918

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
919 920
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
921
                when initalizing
922

Y
yi.wu 已提交
923 924
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
925 926
        """
        s_prog = Program()
W
Wu Yi 已提交
927
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
928
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
929 930 931 932 933 934 935 936 937 938 939
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
940
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
941
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
942
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
943 944 945 946
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
947
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
948 949
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
950 951 952 953 954 955 956 957 958 959
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
960 961

            if op_on_pserver:
962 963 964
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
965 966 967
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
968
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
969 970 971 972
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
973
                    attrs=op.all_attrs())
W
Wu Yi 已提交
974 975 976 977 978 979 980 981 982
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
983 984

        # add slice vars
985
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
986

T
typhoonzero 已提交
987 988
        return s_prog

T
tangwei12 已提交
989
    def _get_slice_vars_and_attrs(self, endpoint):
990
        slice_vars_and_attrs = {}
T
tangwei12 已提交
991
        block_suffix = "block"
992
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
993
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
994
            if not block_name:
995 996
                continue

T
tangwei12 已提交
997
            block_idx = int(block_name.split(block_suffix)[1])
998 999
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1000
            skip_dim0 = 0
1001 1002
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1003
                skip_dim0 += slice_var.shape[0]
1004
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1005
        return slice_vars_and_attrs
1006

1007 1008
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1048
    def _init_splited_vars(self):
Y
yi.wu 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1072
        if self.config.slice_var_up:
Y
yi.wu 已提交
1073 1074
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1075 1076 1077
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1078
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1079 1080
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1081 1082 1083
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1084 1085 1086 1087
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1088 1089
        assert (len(grad_blocks) == len(param_blocks))

1090
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1091 1092
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1093
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1094 1095 1096 1097
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1098
        # dict(grad_splited_var -> param_splited_var)
1099
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1100 1101 1102
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1103
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1104
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1105 1106

        # create mapping of endpoint -> split var to create pserver side program
1107
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1117
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1118 1119
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1120
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1121
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1122 1123
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1124 1125
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1126 1127 1128 1129 1130 1131

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1132 1133
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1134
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1135 1136 1137
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1138 1139
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1140 1141
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1142 1143 1144
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1145
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1146
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1147 1148

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1149
                    self.all_out_emb_vars.append(out_var)
1150 1151

                    # delete lookup_table_op
1152
                    delete_ops(program.global_block(), [op])
1153 1154 1155
                    # break for loop
                    break

S
seiriosPlus 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1202
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1203
        # 2. add split_ids_op and send_op to send gradient to pservers
1204

1205 1206
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1207
        table_grad_name = grad_var_name(self.table_name)
1208 1209 1210 1211
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1212
                program.global_block()._insert_op(
1213 1214 1215 1216 1217
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1218 1219
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1220
                program.global_block()._insert_op(
1221
                    index=op_index + 2,
1222
                    type="send",
1223
                    inputs={'X': self.trainer_side_table_grad_list},
1224 1225 1226 1227 1228
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1229
                    attrs={
1230
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1231
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1232
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1233 1234 1235 1236 1237
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1238
                    })
1239 1240 1241 1242 1243 1244
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1245
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1271
        return prefetch_var_name_to_block_id
1272 1273

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1274
                                     pre_block_idx, grad_to_block_id):
1275
        # STEP: create table optimize block
1276
        table_opt_block = pserver_program._create_block(pre_block_idx)
1277
        # create table param and grad var in pserver program
1278 1279
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1280 1281 1282
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1283 1284
        ][0]

Y
Yancey1989 已提交
1285 1286
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1287

T
tangwei12 已提交
1288
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1289 1290
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1291 1292 1293
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1294 1295
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1296
            shape=table_shape,
Y
Yancey1989 已提交
1297 1298 1299
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1300

1301 1302
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1303
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1304
            self.origin_program.global_block().vars[grad_var_name(
1305
                self.table_name)])
1306

1307 1308 1309
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1310

1311 1312 1313
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1314
            pserver_side_table_grad_list = [
1315 1316 1317 1318 1319 1320 1321 1322 1323
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1324
            # append sum op for pserver_side_table_grad_list
1325 1326
            table_opt_block.append_op(
                type="sum",
1327
                inputs={"X": pserver_side_table_grad_list},
1328 1329
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1330 1331
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1332
            origin_grad_name = grad_var.name
1333 1334
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1335 1336
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1337
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1338
            grad_var = pserver_program.global_block()._rename_var(
1339
                origin_grad_name, splited_grad_name)
1340 1341 1342 1343 1344 1345 1346

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1347
        # only support sgd now
1348 1349 1350
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1351
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1352

1353 1354 1355
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1356 1357
        return table_opt_block

T
tangwei12 已提交
1358 1359 1360 1361 1362
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1363
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1364
            name="kLookupTablePath",
T
tangwei12 已提交
1365 1366
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1367

W
Wu Yi 已提交
1368
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1369
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1370 1371 1372 1373
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1374
            attrs={'file_path': "none"})
T
tangwei12 已提交
1375 1376 1377

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1378 1379 1380 1381 1382
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1383
        Create vars for each split.
T
typhoonzero 已提交
1384 1385
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1386 1387 1388 1389
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1390
        Returns:
1391
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1392
                from original var name to each var split.
T
typhoonzero 已提交
1393
        """
1394 1395

        # varname->[(block_id, current_block_size)]
1396
        block_map = collections.OrderedDict()
1397

1398
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1399 1400
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1401
            if varname not in block_map:
T
typhoonzero 已提交
1402
                block_map[varname] = []
1403
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1404

M
minqiyang 已提交
1405
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1406
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1407
            if len(splited) == 1:
1408
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1409
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1410
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1411
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1412 1413 1414 1415 1416
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1417
                continue
T
typhoonzero 已提交
1418
            var_mapping[varname] = []
T
typhoonzero 已提交
1419 1420 1421 1422
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1423

T
typhoonzero 已提交
1424
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1425
                size = block[1]
M
minqiyang 已提交
1426
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1427 1428 1429
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1430
                new_var_name = ""
1431
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1432
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1433
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1434 1435
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1436
                                   (varname, i)
T
typhoonzero 已提交
1437
                var = program.global_block().create_var(
T
typhoonzero 已提交
1438 1439
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1440
                    dtype=orig_var.dtype,
1441
                    type=orig_var.type,
T
typhoonzero 已提交
1442
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1443
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1444
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1445
        return var_mapping
T
done  
typhoonzero 已提交
1446

1447
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1448 1449 1450 1451 1452 1453
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1454
            persistable=persistable)
T
done  
typhoonzero 已提交
1455

Y
Yancey1989 已提交
1456
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1457 1458 1459 1460
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1461
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1462
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1463 1464
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1465
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1466 1467 1468 1469
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1470 1471 1472 1473
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1474 1475 1476 1477
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1478
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1479 1480 1481 1482
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1483 1484 1485 1486
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1487 1488 1489
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1490

T
typhoonzero 已提交
1491 1492 1493 1494
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1495
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1508
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1509 1510
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1511 1512
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1513
                return param_shape
1514 1515 1516
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1517 1518 1519
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1520 1521
        elif op_type == "sgd":
            pass
1522 1523 1524 1525
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1526 1527
        return orig_shape

1528 1529
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1530
        orig_var_name = ""
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1541
        else:
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1564
            return None
1565 1566 1567 1568
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1569
        else:
1570
            merged_var_name = orig_varname
1571 1572

        merged_var = pserver_block.vars[merged_var_name]
1573 1574 1575
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1576
            for i in range(self.trainer_num):
1577
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1578
                                   (merged_var_name, i)
1579 1580 1581 1582
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1583 1584
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1585 1586 1587 1588 1589
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1590
        return merged_var
T
typhoonzero 已提交
1591

W
Wu Yi 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1654
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1655
                            grad_to_block_id, origin_program, merged_var):
1656
        program = optimize_block.program
T
typhoonzero 已提交
1657
        pserver_block = program.global_block()
1658
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1669 1670 1671 1672
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1673
        for key in opt_op.input_names:
T
typhoonzero 已提交
1674
            if key == "Grad":
W
Wu Yi 已提交
1675 1676 1677 1678
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1679
            elif key == "Param":
W
Wu Yi 已提交
1680
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1681 1682
                if not param_block:
                    return
T
typhoonzero 已提交
1683
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1684
                    name=param_block.name,
T
typhoonzero 已提交
1685
                    persistable=True,
T
typhoonzero 已提交
1686 1687 1688
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1689
            elif key == "LearningRate":
1690
                # learning rate variable has already be created by non-optimize op,
1691
                # don't create it once again.
1692
                lr_varname = opt_op.input(key)[0]
1693
                if lr_varname in pserver_block.vars:
1694 1695 1696 1697 1698 1699 1700 1701 1702
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1703

T
typhoonzero 已提交
1704
        for key in opt_op.input_names:
1705
            new_shape = None
W
Wu Yi 已提交
1706
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1707
                continue
1708
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1709
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1710
            # update accumulator variable shape
1711 1712
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1713
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1714 1715 1716 1717 1718
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1719

1720 1721 1722 1723 1724 1725 1726
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1727
        # change output's ParamOut variable
1728 1729
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1730
        outputs["ParamOut"] = new_inputs["Param"]
1731
        optimize_block.append_op(
T
typhoonzero 已提交
1732 1733
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1734
            outputs=outputs,
G
gongweibao 已提交
1735
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1748
        grad_block = None
M
minqiyang 已提交
1749
        for _, g in six.iteritems(var_dict):
1750
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1751
                # skip per trainer vars
1752
                if g.name.find(".trainer_") == -1:
1753 1754 1755 1756 1757
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1758 1759
        return grad_block

Q
Qiyang Min 已提交
1760 1761 1762
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1763
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1764 1765 1766 1767
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1768
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1769 1770 1771

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1772
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1773 1774 1775 1776
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1777
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1778

Y
Yancey1989 已提交
1779
        return block.append_op(
G
gongweibao 已提交
1780
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1781 1782

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1783
        program = optimize_block.program
1784
        # Append the ops for parameters that do not need to be optimized/updated
1785 1786
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1787
        for key, varlist in six.iteritems(inputs):
1788 1789
            if not isinstance(varlist, list):
                varlist = [varlist]
1790 1791 1792
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1793
                # for inputs/outputs
1794
                grad_block = self._get_pserver_grad_param_var(
1795 1796
                    var, program.global_block().vars)
                if grad_block:
1797
                    varlist[i] = grad_block
1798
                elif var.name not in program.global_block().vars:
1799 1800 1801 1802 1803
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1804

1805 1806
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1807
        for key, varlist in six.iteritems(outputs):
1808 1809
            if not isinstance(varlist, list):
                varlist = [varlist]
1810 1811 1812
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1813 1814
                    var, program.global_block().vars)
                if grad_block:
1815
                    varlist[i] = grad_block
1816
                elif var.name not in program.global_block().vars:
1817 1818 1819 1820 1821
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1822

Y
Yancey1989 已提交
1823
        return optimize_block.append_op(
T
typhoonzero 已提交
1824
            type=opt_op.type,
T
typhoonzero 已提交
1825 1826
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1827
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1828

1829 1830 1831 1832
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1833
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1834
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1835 1836 1837 1838 1839 1840
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1841 1842
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1843 1844 1845 1846 1847 1848
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1849
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1850
        if "Param" in op.input_names and \
T
tangwei12 已提交
1851
                "LearningRate" in op.input_names:
1852 1853 1854 1855 1856 1857 1858
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1859
        if op.input("Param")[0] in param_names:
1860 1861 1862
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1863
                param = op.input("Param")[0]
T
typhoonzero 已提交
1864
                if same_or_split_var(n, param) and n != param:
1865 1866 1867
                    return True
            return False

T
typhoonzero 已提交
1868
    def _get_input_map_from_op(self, varmap, op):
1869
        """Returns a dict from op input name to the vars in varmap."""
1870
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1882
        """Returns a dict from op output name to the vars in varmap."""
1883
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1893 1894

    def _get_lr_ops(self):
1895 1896 1897
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1898 1899 1900 1901
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1902 1903 1904 1905 1906
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1907 1908 1909 1910
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1911
            if self._is_optimizer_op(op):
1912 1913 1914 1915
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1916
        block = self.origin_program.global_block()
1917 1918 1919 1920 1921
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1922

1923 1924 1925 1926 1927
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1928
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1929 1930 1931 1932 1933 1934
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1935 1936
                    # we only need to append op for once
                    break
1937
        return lr_ops
Y
Yancey1989 已提交
1938

W
Wu Yi 已提交
1939 1940 1941 1942 1943
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1944 1945
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1946 1947 1948
            return True
        return False

Y
Yancey1989 已提交
1949
    def _get_optimize_pass(self):
1950
        """
1951
        Get optimizer operators, parameters and gradients from origin_program
1952 1953 1954 1955
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1956 1957 1958
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1959 1960
        # tmp set to dedup
        optimize_params = set()
1961
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1962
        for op in block.ops:
W
Wu Yi 已提交
1963
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1964
                opt_ops.append(op)
1965 1966 1967 1968 1969 1970
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1971 1972
                        params_grads.append([
                            origin_var_dict[param_name],
1973
                            origin_var_dict[grad_name]
1974
                        ])
Y
Yancey1989 已提交
1975 1976 1977
            else:
                pass
        return opt_ops, params_grads