device_context.h 26.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
71 72
#include "paddle/fluid/platform/xpu/xpu_header.h"
#include "paddle/fluid/platform/xpu/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101

  MAX_DEVICE_TYPES = 4,
102 103
};

104 105
DeviceType Place2DeviceType(const platform::Place& place);

106 107 108
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
109
constexpr DeviceType kNPU = DeviceType::NPU;
110

Q
QI JUN 已提交
111 112
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
113
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
114
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
115

116
  virtual void Wait() const {}
Q
QI JUN 已提交
117 118
};

Q
qijun 已提交
119 120
class CPUDeviceContext : public DeviceContext {
 public:
121
  CPUDeviceContext();
Q
qijun 已提交
122
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
123

124
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
125

L
liaogang 已提交
126
  Place GetPlace() const override;
Y
Yu Yang 已提交
127

Q
qijun 已提交
128
 private:
D
dzhwinter 已提交
129
  CPUPlace place_;
Q
qijun 已提交
130
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
131 132
};

Y
Yang Yu 已提交
133 134 135 136 137 138 139 140
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

141
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
142
namespace xpu = baidu::xpu::api;
143 144 145 146 147 148
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
149
  XPUVersion xpu_version() const { return xpu_version_; }
150 151 152 153 154 155
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

156
#ifdef PADDLE_WITH_XPU_BKCL
157
  /*! \brief  Return bkcl context. */
158 159 160 161 162 163
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

164 165
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
166
  XPUVersion xpu_version_;
167
  xpu::Context* context_;
168 169 170
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
171 172 173 174 175 176 177 178 179 180 181 182 183

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

184 185 186 187 188 189 190 191
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
192

193 194 195 196 197 198
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

199 200 201 202 203 204 205
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

221 222 223
 private:
  NPUPlace place_;
  aclrtContext context_;
224 225 226 227

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

264 265 266
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
267
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
268
class EigenCudaStreamDevice;
S
sneaxiy 已提交
269

270 271 272 273 274
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
275 276
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

292 293 294 295 296 297
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

298
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
299

300 301 302
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
303
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
304
#endif
305

306
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
307 308 309
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
310
#endif
G
Guo Sheng 已提交
311

312 313 314 315 316 317 318 319 320 321 322
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
323 324 325 326 327
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

347 348 349 350 351
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
352 353 354 355 356 357 358
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
359 360 361 362 363
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
364 365
    }
  }
366
#endif
367 368 369

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
370 371 372 373 374
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
375 376
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
377 378 379 380
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
381 382
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
383
            << ", but MIOPEN version in your machine is "
384
            << local_miopen_version / 100 << "." << local_miopen_version % 100
385 386 387 388 389 390 391 392
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
393 394 395 396 397 398 399 400 401 402 403 404 405
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
406 407
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
408
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
409
#endif
410 411 412 413 414
    } else {
      cudnn_handle_ = nullptr;
    }
  }

415
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
416
  void InitCuSolverContext() {
417 418
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
419 420
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
421
#endif
G
Guo Sheng 已提交
422

423 424
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
425 426 427
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
428
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
429
#endif
430 431 432 433 434 435 436
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
437
    cublas_tf32_tensor_core_handle_.reset();
438 439
  }

440
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
441 442 443 444 445 446
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
447
#endif
G
Guo Sheng 已提交
448

449 450 451 452
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
453 454 455
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
456
  cudnnHandle_t cudnn_handle_;
457
#endif
458 459
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
460
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
461
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
462
  cusolverDnHandle_t cusolver_dn_handle_;
463
#endif
464 465 466
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

467
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
468
 public:
D
dzhwinter 已提交
469
  explicit CUDADeviceContext(CUDAPlace place);
470
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
471

472
  /*! \brief  Wait for all operations completion in the stream. */
473
  void Wait() const override;
Q
QI JUN 已提交
474

475
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
476
  Place GetPlace() const override;
477

K
Kexin Zhao 已提交
478
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
479 480
  int GetComputeCapability() const;

481 482 483
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

484 485 486 487 488 489
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

490 491 492
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

493 494 495
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

496 497 498
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
499
    return context()->CublasCall(callback);
500 501 502 503 504 505 506 507 508
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
509
    return context()->TensorCoreCublasCallIfAvailable(callback);
510
  }
S
sneaxiy 已提交
511

512 513 514 515
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
516
  cudnnHandle_t cudnn_handle() const;
517
#endif
518

519 520 521 522
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
523
  cublasHandle_t cublas_handle() const;
524
#endif
525

S
sneaxiy 已提交
526 527 528 529 530 531 532 533 534
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

535
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
536
  cusolverDnHandle_t cusolver_dn_handle() const;
537
#endif
G
Guo Sheng 已提交
538

Q
init  
qijun 已提交
539
  /*! \brief  Return cuda stream in the device context. */
540
  gpuStream_t stream() const;
Q
QI JUN 已提交
541

542
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
543 544 545 546 547
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
548
#endif
Q
qingqing01 已提交
549

Y
Yu Yang 已提交
550
  template <typename Callback>
551
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
552
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
553 554
  }

S
sneaxiy 已提交
555 556
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
557 558 559 560 561
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
562 563
  }

564
  void ResetDefaultContext(const stream::Priority& priority) {
565 566 567
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

568
  void ResetThreadContext(const stream::Priority& priority) {
569 570 571 572 573 574 575 576 577 578
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
579

Q
QI JUN 已提交
580
 private:
D
dzhwinter 已提交
581
  CUDAPlace place_;
582
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
583

584 585 586 587 588 589
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
590

591 592
  mutable std::mutex cudnn_handle_mtx_;

593
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
594 595 596 597 598 599
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
600
#endif
Q
qingqing01 已提交
601

C
chengduo 已提交
602 603 604 605 606
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
607
  int max_threads_per_block_;
608
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
609

610
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
611
};
Q
qijun 已提交
612

613 614
class CudnnWorkspaceHandle {
 public:
615 616
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
617 618 619 620 621 622 623 624

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
625 626 627 628
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
629 630 631 632 633 634 635 636 637 638 639 640 641
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

642
  void ReallocWorkspace(size_t required_workspace_bytes);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
659
  std::mutex* mtx_;
660 661
};

Y
Yang Yu 已提交
662 663
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
664
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
665 666
};

C
chengduoZH 已提交
667
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
668 669 670 671 672 673
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
674

C
chengduoZH 已提交
675 676 677 678 679 680 681 682 683 684 685
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
686
#endif
Q
qijun 已提交
687

T
tensor-tang 已提交
688
#ifdef PADDLE_WITH_MKLDNN
689 690 691 692 693 694

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
695
    bool said_once = false;
696 697 698 699 700 701 702 703 704 705 706
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
707 708 709
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
710 711
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
712
    void* exec_ptr_ = nullptr;
713 714

    Body();
715
    ~Body();
716 717 718 719 720 721
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
722
    void log_lib_version(void);
723 724
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
725 726 727 728
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
729 730
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
746

T
tensor-tang 已提交
747 748
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

766 767 768 769 770 771 772 773
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
774

T
tensor-tang 已提交
775 776 777
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
778
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
779

780 781
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
782
  void RemoveShapeEntriesWithExecutor(void) const;
783

784
  // Remove all entries from the blob map
785
  void ResetBlobMap(void* ptr);
786 787 788

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
789

790 791 792
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

793 794
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
795

796
  // Calculate number of oneDNN objects cached
797
  unsigned int GetCachedObjectsNumber(void) const;
798

799 800
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
801

802 803 804 805
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
806
 private:
807
  std::shared_ptr<BlobMap> p_blobmap_;
808 809
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
810
  std::shared_ptr<ExecShape> p_exec_items_;
811
  std::shared_ptr<std::mutex> p_mutex_;
812
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
813 814 815
};
#endif

D
dzhwinter 已提交
816 817 818 819 820
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
821
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
822 823 824
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
825 826 827 828
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
829
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
830 831 832 833 834 835
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

836 837
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
838
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
839
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
840

Y
Yang Yu 已提交
841 842 843 844 845 846 847
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

848 849
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
850 851
 private:
  static DeviceContextPool* pool;
852 853
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
854 855 856
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
857 858
}  // namespace platform
}  // namespace paddle