device_context.h 26.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101 102 103 104
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
105
constexpr DeviceType kNPU = DeviceType::NPU;
106

Q
QI JUN 已提交
107 108
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
109
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
110
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
111

112
  virtual void Wait() const {}
Q
QI JUN 已提交
113 114
};

Q
qijun 已提交
115 116
class CPUDeviceContext : public DeviceContext {
 public:
117
  CPUDeviceContext();
Q
qijun 已提交
118
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
119

120
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
121

L
liaogang 已提交
122
  Place GetPlace() const override;
Y
Yu Yang 已提交
123

Q
qijun 已提交
124
 private:
D
dzhwinter 已提交
125
  CPUPlace place_;
Q
qijun 已提交
126
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
127 128
};

Y
Yang Yu 已提交
129 130 131 132 133 134 135 136
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

150
#ifdef PADDLE_WITH_XPU_BKCL
151
  /*! \brief  Return bkcl context. */
152 153 154 155 156 157
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

158 159 160
 private:
  XPUPlace place_;
  xpu::Context* context_;
161 162 163
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
185

186 187 188 189 190 191
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

192 193 194 195 196 197 198
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

214 215 216
 private:
  NPUPlace place_;
  aclrtContext context_;
217 218 219 220

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

257 258 259
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
260
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
261
class EigenCudaStreamDevice;
S
sneaxiy 已提交
262

263 264 265 266 267
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
268
      const stream::Priority& priority = stream::Priority::kNormal);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

284
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
285

286 287 288
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
289
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
290
#endif
291

292
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
293 294 295
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
296
#endif
G
Guo Sheng 已提交
297

298 299 300 301 302 303 304 305 306 307 308
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
309 310 311 312 313
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

333 334 335 336 337
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
338 339 340 341 342 343 344
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
345 346 347 348 349
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
350 351
    }
  }
352
#endif
353 354 355

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
356 357 358 359 360
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
361 362
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
363 364 365 366
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
367 368
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
369
            << ", but MIOPEN version in your machine is "
370
            << local_miopen_version / 100 << "." << local_miopen_version % 100
371 372 373 374 375 376 377 378
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
379 380 381 382 383 384 385 386 387 388 389 390 391
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
392 393
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
394
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
395
#endif
396 397 398 399 400
    } else {
      cudnn_handle_ = nullptr;
    }
  }

401
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
402
  void InitCuSolverContext() {
403 404
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
405 406
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
407
#endif
G
Guo Sheng 已提交
408

409 410
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
411 412 413
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
414
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
415
#endif
416 417 418 419 420 421 422
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
423
    cublas_tf32_tensor_core_handle_.reset();
424 425
  }

426
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
427 428 429 430 431 432
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
433
#endif
G
Guo Sheng 已提交
434

435 436 437 438
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
439 440 441
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
442
  cudnnHandle_t cudnn_handle_;
443
#endif
444 445
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
446
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
447
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
448
  cusolverDnHandle_t cusolver_dn_handle_;
449
#endif
450 451 452
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

453
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
454
 public:
D
dzhwinter 已提交
455
  explicit CUDADeviceContext(CUDAPlace place);
456
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
457

458
  /*! \brief  Wait for all operations completion in the stream. */
459
  void Wait() const override;
Q
QI JUN 已提交
460

461
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
462
  Place GetPlace() const override;
463

K
Kexin Zhao 已提交
464
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
465 466
  int GetComputeCapability() const;

467 468 469
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

470 471 472 473 474 475
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

476 477 478
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

479 480 481
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

482 483 484
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
485
    return context()->CublasCall(callback);
486 487 488 489 490 491 492 493 494
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
495
    return context()->TensorCoreCublasCallIfAvailable(callback);
496
  }
S
sneaxiy 已提交
497

498 499 500 501
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
502
  cudnnHandle_t cudnn_handle() const;
503
#endif
504

505 506 507 508
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
509
  cublasHandle_t cublas_handle() const;
510
#endif
511

S
sneaxiy 已提交
512 513 514 515 516 517 518 519 520
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

521
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
522
  cusolverDnHandle_t cusolver_dn_handle() const;
523
#endif
G
Guo Sheng 已提交
524

Q
init  
qijun 已提交
525
  /*! \brief  Return cuda stream in the device context. */
526
  gpuStream_t stream() const;
Q
QI JUN 已提交
527

528
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
529 530 531 532 533
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
534
#endif
Q
qingqing01 已提交
535

Y
Yu Yang 已提交
536
  template <typename Callback>
537
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
538
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
539 540
  }

S
sneaxiy 已提交
541 542
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
543 544 545 546 547
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
548 549
  }

550
  void ResetDefaultContext(const stream::Priority& priority) {
551 552 553
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

554
  void ResetThreadContext(const stream::Priority& priority) {
555 556 557 558 559 560 561 562 563 564
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
565

Q
QI JUN 已提交
566
 private:
D
dzhwinter 已提交
567
  CUDAPlace place_;
568
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
569

570 571 572 573 574 575
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
576

577 578
  mutable std::mutex cudnn_handle_mtx_;

579
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
580 581 582 583 584 585
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
586
#endif
Q
qingqing01 已提交
587

C
chengduo 已提交
588 589 590 591 592
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
593
  int max_threads_per_block_;
594
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
595

596
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
597
};
Q
qijun 已提交
598

599 600
class CudnnWorkspaceHandle {
 public:
601 602
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
603 604 605 606 607 608 609 610

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
611 612 613 614
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
615 616 617 618 619 620 621 622 623 624 625 626 627
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

628
  void ReallocWorkspace(size_t required_workspace_bytes);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
645
  std::mutex* mtx_;
646 647
};

Y
Yang Yu 已提交
648 649
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
650
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
651 652
};

C
chengduoZH 已提交
653
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
654 655 656 657 658 659
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
660

C
chengduoZH 已提交
661 662 663 664 665 666 667 668 669 670 671
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
672
#endif
Q
qijun 已提交
673

T
tensor-tang 已提交
674
#ifdef PADDLE_WITH_MKLDNN
675 676 677 678 679 680

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
681
    bool said_once = false;
682 683 684 685 686 687 688 689 690 691 692
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
693 694 695
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
696 697
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
698
    void* exec_ptr_ = nullptr;
699 700

    Body();
701
    ~Body();
702 703 704 705 706 707
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
708
    void log_lib_version(void);
709 710
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
711 712 713 714
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
715 716
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
732

T
tensor-tang 已提交
733 734
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

752 753 754 755 756 757 758 759
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
760

T
tensor-tang 已提交
761 762 763
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
764
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
765

766 767
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
768
  void RemoveShapeEntriesWithExecutor(void) const;
769

770
  // Remove all entries from the blob map
771
  void ResetBlobMap(void* ptr);
772 773 774

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
775

776 777 778
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

779 780
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
781

782
  // Calculate number of oneDNN objects cached
783
  unsigned int GetCachedObjectsNumber(void) const;
784

785 786
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
787

788 789 790 791
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
792
 private:
793
  std::shared_ptr<BlobMap> p_blobmap_;
794 795
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
796
  std::shared_ptr<ExecShape> p_exec_items_;
797
  std::shared_ptr<std::mutex> p_mutex_;
798
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
799 800 801
};
#endif

D
dzhwinter 已提交
802 803 804 805 806
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
807
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
808 809 810
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
811 812 813 814
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
815
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
816 817 818 819 820 821
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

822 823
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
824
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
825
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
826

Y
Yang Yu 已提交
827 828 829 830 831 832 833
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

834 835
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
836 837
 private:
  static DeviceContextPool* pool;
838 839
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
840 841 842
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
843 844
}  // namespace platform
}  // namespace paddle