detection.py 107.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'detection_map',
    'rpn_target_assign',
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
47
    'generate_mask_labels',
48 49 50 51
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
52
    'yolo_box',
53
    'box_clip',
J
jerrywgz 已提交
54
    'multiclass_nms',
55
    'distribute_fpn_proposals',
56
    'box_decoder_and_assign',
57
    'collect_fpn_proposals',
C
chengduoZH 已提交
58
]
59 60


61 62
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
63
                      anchor_box,
64
                      anchor_var,
65 66 67
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
68
                      rpn_batch_size_per_im=256,
69 70
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
71
                      rpn_positive_overlap=0.7,
72 73
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
74
    """
H
haowang101779990 已提交
75
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
93
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
94 95 96
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
97 98 99
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
100 101 102 103 104 105
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
106 107
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
108
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
109 110
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
111 112 113
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
114
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
115 116 117
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
118 119 120 121 122 123 124 125 126
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
127
        tuple:
Y
Yuan Gao 已提交
128
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
129 130
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
131 132 133 134 135 136 137
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
138
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
139 140
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
141 142 143 144

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
            import paddle.fluid as fluid
            bbox_pred = fluid.layers.data(name='bbox_pred', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
            cls_logits = fluid.layers.data(name='cls_logits', shape=[100, 1],
                            append_batch_size=False, dtype='float32')
            anchor_box = fluid.layers.data(name='anchor_box', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            anchor_var = fluid.layers.data(name='anchor_var', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight=
                fluid.layers.rpn_target_assign(bbox_pred, cls_logits,
                anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
163

Y
Yuan Gao 已提交
164 165 166
    """

    helper = LayerHelper('rpn_target_assign', **locals())
167
    # Assign target label to anchors
J
jerrywgz 已提交
168 169 170 171 172 173 174
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
175 176
    helper.append_op(
        type="rpn_target_assign",
177 178 179 180 181 182
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
183 184 185
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
186
            'TargetLabel': target_label,
J
jerrywgz 已提交
187
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
188
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
189 190 191
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
192
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
193 194
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
195 196
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
197 198
        })

199 200 201 202
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
203
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
204

205 206 207 208
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
209

J
jerrywgz 已提交
210
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
211 212


Y
Yuan Gao 已提交
213 214
def detection_output(loc,
                     scores,
215 216 217 218 219 220 221 222 223
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
224
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
225

226 227
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
228

229 230 231 232 233 234
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
235 236 237 238 239 240

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
241 242 243 244
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
267 268
        Variable:

269
            The detection outputs is a LoDTensor with shape [No, 6].
270 271 272 273 274 275
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
276
            LoD will be set to {1}, and output tensor only contains one
277
            value, which is -1.
J
jerrywgz 已提交
278 279
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
280 281 282 283

    Examples:
        .. code-block:: python

284 285 286
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
287
                         append_batch_size=False, dtype='float32')
288
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
289
                          append_batch_size=False, dtype='float32')
290
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
291
                          append_batch_size=False, dtype='float32')
292
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
293
                          append_batch_size=False, dtype='float32')
294
            nmsed_outs = fluid.layers.detection_output(scores=scores,
295 296 297 298 299
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
300 301 302 303 304
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
305
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
306
    scores = nn.transpose(scores, perm=[0, 2, 1])
307
    scores.stop_gradient = True
X
Xin Pan 已提交
308 309
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
310 311 312 313 314 315 316 317 318 319 320 321 322
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
323
    nmsed_outs.stop_gradient = True
324
    return nmsed_outs
C
chengduoZH 已提交
325 326


X
Xin Pan 已提交
327 328 329 330 331 332 333 334 335 336 337
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
338 339 340 341 342 343 344 345 346

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            iou = fluid.layers.iou_similarity(x=x, y=y)
X
Xin Pan 已提交
347 348 349
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
350
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
370 371
              name=None,
              axis=0):
X
Xin Pan 已提交
372
    """
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
411 412

    Args:
413 414 415 416 417 418 419
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
420 421 422 423
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
442 443

    Returns:
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
471 472 473 474
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
475 476
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
477 478 479 480
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

481 482 483 484 485 486 487 488 489 490 491 492
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
493 494
    helper.append_op(
        type="box_coder",
495 496
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
B
Bai Yifan 已提交
511 512 513 514 515 516 517 518

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            input = fluid.layers.data(name='input', shape=[4, 10, 5, 5],
                                      append_batch_size=False, dtype='float32')
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
519 520 521
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
522
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
523 524 525 526 527 528 529 530 531 532 533 534
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
535 536
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
537 538
                gt_box,
                gt_label,
D
dengkaipeng 已提交
539
                anchors,
540
                anchor_mask,
D
dengkaipeng 已提交
541 542
                class_num,
                ignore_thresh,
543
                downsample_ratio,
544
                gt_score=None,
D
dengkaipeng 已提交
545
                use_label_smooth=True,
D
dengkaipeng 已提交
546 547 548 549 550 551
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
552
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
553 554 555 556
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
557 558
                          N is the batch number and B is the max box number in 
                          an image.
559
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
560
                            of [N, B].
D
dengkaipeng 已提交
561
        anchors (list|tuple): ${anchors_comment}
562
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
563 564
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
565
        downsample_ratio (int): ${downsample_ratio_comment}
566
        name (string): the name of yolov3 loss. Default None.
567
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
568
                            of [N, B]. Default None.
569
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
570 571

    Returns:
572
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
573 574 575

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
576 577
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
578
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
579 580 581
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
582
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
583 584

    Examples:
585 586 587
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
588 589 590
          gt_box = fluid.layers.data(name='gt_box', shape=[6, 4], dtype='float32')
          gt_label = fluid.layers.data(name='gt_label', shape=[6], dtype='int32')
          gt_score = fluid.layers.data(name='gt_score', shape=[6], dtype='float32')
591 592
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
593 594
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
595 596
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
597 598 599 600 601
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
602
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
603
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
604
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
605
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
606
    if gt_score is not None and not isinstance(gt_score, Variable):
607
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
608 609
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
610 611
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
612 613 614 615 616
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
617 618 619
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
620 621 622 623 624 625 626

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

627 628 629
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

630 631
    inputs = {
        "X": x,
632 633
        "GTBox": gt_box,
        "GTLabel": gt_label,
634
    }
635
    if gt_score:
636
        inputs["GTScore"] = gt_score
637

D
dengkaipeng 已提交
638 639
    attrs = {
        "anchors": anchors,
640
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
641 642
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
643
        "downsample_ratio": downsample_ratio,
644
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
645 646 647 648
    }

    helper.append_op(
        type='yolov3_loss',
649
        inputs=inputs,
650 651 652 653 654
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
655 656 657 658
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
659
@templatedoc(op_type="yolo_box")
660 661 662 663 664 665 666
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
667 668 669 670 671
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
672
        img_size (Variable): ${img_size_comment}
D
dengkaipeng 已提交
673 674 675 676
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
677
        name (string): the name of yolo box layer. Default None.
D
dengkaipeng 已提交
678 679

    Returns:
D
dengkaipeng 已提交
680
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
681 682
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
683 684 685 686 687 688 689 690

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
691

D
dengkaipeng 已提交
692 693
    .. code-block:: python

X
xiaoting 已提交
694
        import paddle.fluid as fluid
D
dengkaipeng 已提交
695 696
        x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
697
        loss = fluid.layers.yolo_box(x=x, img_size=608, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
698 699 700 701 702
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
703 704 705
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
706
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
707
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
708
    if not isinstance(class_num, int):
709
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
710
    if not isinstance(conf_thresh, float):
711
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
712 713 714 715 716 717 718

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
719
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
720 721 722 723 724
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
725 726 727 728
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
729 730 731 732 733 734 735 736
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
737
@templatedoc()
738 739
def detection_map(detect_res,
                  label,
740 741
                  class_num,
                  background_label=0,
742 743
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
744 745 746 747
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
789 790
    helper = LayerHelper("detection_map", **locals())

791
    def __create_var(type):
X
Xin Pan 已提交
792
        return helper.create_variable_for_type_inference(dtype=type)
793 794 795 796 797 798 799 800 801 802 803 804

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

805 806 807 808 809
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
810
            'HasState': has_state,
811 812 813 814 815 816 817 818 819 820 821 822 823
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
824 825
            'ap_type': ap_version,
            'class_num': class_num,
826
        })
827
    return map_out
828 829


830 831 832 833
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
834
    """
Y
yuyang18 已提交
835 836
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
837
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
838 839 840 841 842 843 844 845
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
846 847 848
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
849

Y
yuyang18 已提交
850
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
851 852 853
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
854 855 856
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

857 858 859 860 861
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
862 863 864 865 866 867
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
868
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
869
           'bipartite' or 'per_prediction'. [default 'bipartite'].
870 871
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
872
            on the maximum distance, 0.5 by default.
873
    Returns:
Y
yuyang18 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
897 898
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
899 900 901
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
902 903 904
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
905 906 907 908
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
926

927 928 929 930 931
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
932

933
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
934

935 936 937
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
938

939 940
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
941

942
        Otherwise,
C
chengduoZH 已提交
943

944 945
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
946

947
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
948

949 950
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
951

952
    .. code-block:: text
C
chengduoZH 已提交
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
969 970 971 972 973
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
974 975 976 977 978 979
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
996 997
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
998 999
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1027
             normalize=True,
1028 1029
             sample_size=None):
    """
Y
yuyang18 已提交
1030
    **Multi-box loss layer for object detection algorithm of SSD**
1031 1032 1033 1034 1035 1036 1037

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1038
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1039

1040
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1041

1042
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1043

1044
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1045

1046
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1047

1048
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1049

1050 1051
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1052

1053
    4. Assign classification and regression targets
Y
yuyang18 已提交
1054

1055
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1056

1057
      4.2. Assign regression targets.
Y
yuyang18 已提交
1058

1059
      4.3. Assign classification targets.
Y
yuyang18 已提交
1060

1061
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1062

1063
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1064

1065
      5.1 Compute localization loss.
Y
yuyang18 已提交
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
1090
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
1091
        neg_overlap (float): The negative overlap upper bound for the unmatched
1092
            predictions. Use only when mining_type is 'max_negative',
1093 1094 1095 1096
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
1097
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
1098 1099
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1100
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1101
            of output locations, True by default.
1102 1103
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1104 1105

    Returns:
Y
yuyang18 已提交
1106 1107
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1108 1109

    Raises:
Y
yuyang18 已提交
1110 1111
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1131 1132 1133 1134 1135 1136 1137
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1138
    conf_shape = nn.shape(confidence)
1139 1140

    def __reshape_to_2d(var):
1141
        return nn.flatten(x=var, axis=2)
1142 1143 1144 1145 1146

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1147 1148
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1149 1150 1151

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1152 1153
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1154
    gt_label.stop_gradient = True
1155 1156 1157 1158 1159 1160 1161
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1162
    target_label.stop_gradient = True
1163 1164
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1165
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1166
    actual_shape.stop_gradient = True
1167
    conf_loss = nn.reshape(
1168
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1169
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1170
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1171
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1172 1173
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1188
            'neg_dist_threshold': neg_overlap,
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1214

1215 1216 1217 1218
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1219 1220 1221 1222
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1223 1224 1225 1226 1227 1228 1229 1230
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1231 1232 1233 1234
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1235 1236
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1237
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1238
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1239 1240 1241 1242 1243
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1244
    return loss
C
chengduoZH 已提交
1245 1246


1247 1248 1249 1250
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1251
              aspect_ratios=[1.],
1252 1253 1254 1255 1256
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1257 1258
              name=None,
              min_max_aspect_ratios_order=False):
1259
    """
Q
update  
qiaolongfei 已提交
1260
    **Prior Box Operator**
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1272
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1273 1274
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1275 1276
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1277 1278 1279 1280
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1281
       step(list|turple): Prior boxes step across width and height, If
1282
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1283 1284
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1285 1286
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1287
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1288
            in order of [min, max, aspect_ratios], which is consistent with
1289 1290 1291
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1292 1293

    Returns:
Q
update  
qiaolongfei 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1307 1308 1309 1310


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1311

R
ruri 已提交
1312 1313
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1314
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1315
                input=input,
Q
update  
qiaolongfei 已提交
1316 1317 1318 1319
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1320 1321 1322 1323
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1339 1340 1341 1342 1343 1344 1345 1346
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1347 1348
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1349 1350
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1351 1352
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1353 1354
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1355 1356
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1378
                      flatten_to_2d=False,
R
ruri 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1415 1416
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1417 1418 1419 1420 1421 1422
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1423 1424 1425 1426
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1427 1428

        variances: the expanded variances of PriorBox.
1429 1430 1431 1432
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1433 1434 1435 1436 1437


    Examples:
        .. code-block:: python

R
ruri 已提交
1438 1439
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1440
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1441
                input=input,
R
ruri 已提交
1442
                image=images,
1443 1444 1445 1446 1447
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1478 1479 1480 1481
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1497
def multi_box_head(inputs,
C
chengduoZH 已提交
1498 1499
                   image,
                   base_size,
C
chengduoZH 已提交
1500
                   num_classes,
C
chengduoZH 已提交
1501
                   aspect_ratios,
1502 1503
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1504 1505
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1506 1507 1508 1509
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1510 1511
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1512
                   clip=False,
C
chengduoZH 已提交
1513
                   kernel_size=1,
C
chengduoZH 已提交
1514
                   pad=0,
C
chengduoZH 已提交
1515
                   stride=1,
1516 1517
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1518
    """
C
chengduoZH 已提交
1519 1520
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1521
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1522
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1523 1524

    Args:
1525
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1526
            of all Variables is NCHW.
C
chengduoZH 已提交
1527 1528
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1529 1530
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1553
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1554 1555 1556 1557 1558 1559
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1560
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1561
            in order of [min, max, aspect_ratios], which is consistent with
1562 1563 1564
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1565 1566

    Returns:
Q
update  
qiaolongfei 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1582

C
chengduoZH 已提交
1583 1584 1585

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1597
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1598
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1608 1609
    """

C
chengduoZH 已提交
1610
    def _reshape_with_axis_(input, axis=1):
1611
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1612
        return out
1613

1614 1615
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1616

C
chengduoZH 已提交
1617 1618 1619 1620
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1621 1622
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1623

C
chengduoZH 已提交
1624 1625 1626 1627 1628
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1629
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1630 1631 1632
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1633
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1634 1635 1636 1637 1638
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1662 1663
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1664 1665
    box_results = []
    var_results = []
C
chengduoZH 已提交
1666 1667
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1668 1669
        max_size = max_sizes[i]

1670
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1671
            min_size = [min_size]
C
chengduoZH 已提交
1672 1673
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1674 1675 1676 1677

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1678
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1679
                aspect_ratio = [aspect_ratio]
1680
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1681

1682
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1683 1684
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1685 1686 1687 1688 1689

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1690

1691
        # get loc
Y
Yuan Gao 已提交
1692
        num_loc_output = num_boxes * 4
1693
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1694
            input=input,
1695 1696 1697 1698 1699
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1700
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1701
        compile_shape = [
1702
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1703
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1704
        ]
1705 1706 1707
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1708
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1709

1710
        # get conf
C
chengduoZH 已提交
1711
        num_conf_output = num_boxes * num_classes
1712
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1713
            input=input,
1714 1715 1716 1717
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1718
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1719 1720
        new_shape = [0, -1, num_classes]
        compile_shape = [
1721 1722 1723
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1724
        ]
1725 1726 1727 1728
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1729
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1730

C
chengduoZH 已提交
1731 1732 1733
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1734 1735
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1745 1746
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1747

1748 1749
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1750
    return mbox_locs_concat, mbox_confs_concat, box, var
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1771 1772
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1773
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1774
                                        anchors, e.g. [0.5, 1.0, 2.0].
1775
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1776 1777
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1778 1779 1780 1781
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1795 1796 1797 1798 1799 1800


    Examples:

        .. code-block:: python

J
jerrywgz 已提交
1801 1802
            conv1 = fluid.layers.data(name='conv1', shape=[48, 16, 16], dtype='float32')
            anchor, var = fluid.layers.anchor_generator(
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1836 1837
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1838 1839 1840 1841 1842 1843 1844 1845 1846
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1847 1848


W
whs 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
1869
        transformed_width (integer): The width of transformed output.
W
whs 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1879
            import paddle.fluid as fluid
1880

S
SunGaofeng 已提交
1881 1882 1883
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
            out = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
1884 1885 1886
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1887
    out = helper.create_variable_for_type_inference(dtype)
1888 1889
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1890 1891 1892 1893
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
1894 1895 1896 1897 1898
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
            "Out2InWeights": out2in_w
        },
W
whs 已提交
1899 1900 1901 1902 1903 1904 1905 1906
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1907 1908
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1909
                             is_crowd,
1910
                             gt_boxes,
1911
                             im_info,
1912 1913 1914 1915 1916 1917
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1918
                             class_nums=None,
A
AIFollowers 已提交
1919 1920 1921
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
1922
    """
A
AIFollowers 已提交
1923

1924
    ** Generate Proposal Labels of Faster-RCNN **
A
AIFollowers 已提交
1925

B
buxingyuan 已提交
1926
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1927
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1928 1929 1930

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1931
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1932 1933
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1934
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1935
    then we apply random sampling to make sure
B
buxingyuan 已提交
1936
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
A
AIFollowers 已提交
1956 1957
	is_cls_agnostic(bool): class agnostic bbox regression will only represent fg and bg boxes.
        is_cascade_rcnn(bool): cascade rcnn model will change sampling policy when settting True.
B
Bai Yifan 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            rpn_rois = fluid.layers.data(name='rpn_rois', shape=[2, 4],
                           append_batch_size=False, dtype='float32')
            gt_classes = fluid.layers.data(name='gt_classes', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[8, 4],
                           append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[10, 3],
                           append_batch_size=False, dtype='float32')
            rois, labels_int32, bbox_targets, bbox_inside_weights,
            bbox_outside_weights = fluid.layers.generate_proposal_labels(
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

1978 1979 1980 1981
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1991 1992 1993 1994 1995 1996

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1997
            'IsCrowd': is_crowd,
1998
            'GtBoxes': gt_boxes,
1999
            'ImInfo': im_info
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2015
            'class_nums': class_nums,
A
AIFollowers 已提交
2016 2017 2018
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2110 2111
          import paddle.fluid as fluid

2112 2113 2114 2115 2116 2117 2118 2119
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2120
          # rois, roi_labels can be the output of
2121
          # fluid.layers.generate_proposal_labels.
2122 2123 2124 2125
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2126 2127 2128 2129 2130 2131
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2132
              labels_int32=roi_labels,
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2182 2183
    **Generate proposal Faster-RCNN**

2184 2185 2186 2187
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2188 2189 2190 2191
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2192 2193
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2194 2195 2196 2197 2198 2199
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2200 2201 2202 2203 2204 2205 2206 2207 2208
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2209
            between origin image size and the size of feature map.
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2221
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2222 2223 2224 2225
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
B
Bai Yifan 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
            scores = fluid.layers.data(name='scores', shape=[2, 4, 5, 5],
                         append_batch_size=False, dtype='float32')
            bbox_deltas = fluid.layers.data(name='bbox_deltas', shape=[2, 16, 5, 5],
                         append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[2, 3],
                         append_batch_size=False, dtype='float32')
            anchors = fluid.layers.data(name='anchors', shape=[5, 5, 4, 4],
                         append_batch_size=False, dtype='float32')
            variances = fluid.layers.data(name='variances', shape=[5, 5, 10, 4],
                         append_batch_size=False, dtype='float32')
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2244 2245 2246
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2247 2248 2249 2250
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2273 2274


J
jerrywgz 已提交
2275
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2276 2277
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2278
    For each input box, The formula is given as follows:
2279 2280 2281
        
    .. code-block:: text

J
jerrywgz 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2293 2294

    Args:
J
jerrywgz 已提交
2295
        input(variable): The input box, the last dimension is 4.
2296 2297 2298 2299
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2300 2301 2302 2303
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2304
        
J
jerrywgz 已提交
2305 2306
    Examples:
        .. code-block:: python
2307
        
J
jerrywgz 已提交
2308
            boxes = fluid.layers.data(
J
jerrywgz 已提交
2309
                name='boxes', shape=[8, 4], dtype='float32', lod_level=1)
J
jerrywgz 已提交
2310 2311
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2312
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2313 2314 2315
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2316
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2317
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2318
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2319

2320 2321
    return output

J
jerrywgz 已提交
2322

J
jerrywgz 已提交
2323 2324 2325 2326 2327
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2328
                   nms_threshold=0.3,
J
jerrywgz 已提交
2329 2330
                   normalized=True,
                   nms_eta=1.,
2331 2332
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2333
    """
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2395 2396 2397 2398
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2399

2400

2401 2402 2403
    Examples:
        .. code-block:: python

2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2437 2438

    return output
2439 2440 2441 2442 2443 2444 2445 2446 2447


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2448 2449 2450 2451 2452 2453
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2454
    
J
jerrywgz 已提交
2455
    .. math::
2456

J
jerrywgz 已提交
2457
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2458

J
jerrywgz 已提交
2459 2460 2461
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2462 2463

    Args:
J
jerrywgz 已提交
2464
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2465 2466 2467 2468 2469 2470
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2471 2472
        name(str|None): The name of this operator.        

2473
    Returns:
J
jerrywgz 已提交
2474 2475 2476 2477 2478
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2479 2480 2481 2482 2483 2484 2485

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2486 2487 2488
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2489 2490 2491 2492 2493
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
2494
    dtype = helper.input_dtype('fpn_rois')
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2512 2513


2514
@templatedoc()
J
jerrywgz 已提交
2515 2516 2517 2518 2519 2520
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2521 2522 2523 2524 2525 2526 2527
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2528
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2529
        name(str|None): The name of this operator
2530
    Returns:
J
jerrywgz 已提交
2531 2532 2533 2534 2535 2536 2537
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2538 2539 2540
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2541
            pb = fluid.layers.data(
J
jerrywgz 已提交
2542
                name='prior_box', shape=[4], dtype='float32')
J
jerrywgz 已提交
2543
            pbv = fluid.layers.data(
J
jerrywgz 已提交
2544 2545
                name='prior_box_var', shape=[4], 
                dtype='float32', append_batch_size=False)
J
jerrywgz 已提交
2546
            loc = fluid.layers.data(
J
jerrywgz 已提交
2547
                name='target_box', shape=[4*81], dtype='float32')
J
jerrywgz 已提交
2548
            scores = fluid.layers.data(
J
jerrywgz 已提交
2549
                name='scores', shape=[81], dtype='float32')
J
jerrywgz 已提交
2550
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2551
                pb, pbv, loc, scores, 4.135)
2552 2553 2554 2555

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2556
    decoded_box = helper.create_variable_for_type_inference(
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2571
            "DecodeBox": decoded_box,
2572 2573
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2574
    return decoded_box, output_assign_box
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
    Concat multi-level RoIs (Region of Interest) and select N RoIs 
    with respect to multi_scores. This operation performs the following steps:

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
        multi_ros(list): List of RoIs to collect
        multi_scores(list): List of scores
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
        name(str|None): A name for this layer(optional)
        
    Returns:
        Variable: Output variable of selected RoIs. 

    Examples:
        .. code-block:: python
           
            multi_rois = []
            multi_scores = []
            for i in range(4):
                multi_rois.append(fluid.layers.data(
                    name='roi_'+str(i), shape=[4], dtype='float32', lod_level=1))
            for i in range(4):
                multi_scores.append(fluid.layers.data(
                    name='score_'+str(i), shape=[1], dtype='float32', lod_level=1))

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois