executor.py 108.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
L
Leo Chen 已提交
28

29
from . import core
30
from . import unique_name
31 32
from . import compiler
from .. import compat as cpt
33
from .trainer_factory import TrainerFactory
34
from .trainer_factory import FetchHandlerMonitor
35
import copy
36
from . import framework
37
from .incubate.checkpoint import auto_checkpoint as acp
38
from .compiler import _prune_feed_ops
39

T
Tink_Y 已提交
40
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
g_scope = core.Scope()
F
flame 已提交
43 44
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46

Y
Yang Yu 已提交
47
def global_scope():
Y
yuyang18 已提交
48
    """
49 50
    :api_attr: Static Graph

Y
yuyang18 已提交
51 52 53
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
54 55 56
    Returns:
        Scope: The global/default scope instance.

57 58 59
    Examples:
        .. code-block:: python

60
          import paddle
61 62
          import numpy

63 64
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
65
    """
Y
Yang Yu 已提交
66 67 68
    return g_scope


69
def _switch_scope(scope):
Y
Yang Yu 已提交
70 71 72 73 74 75
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
76
@signature_safe_contextmanager
Y
Yang Yu 已提交
77
def scope_guard(scope):
Y
yuyang18 已提交
78
    """
79
    
80 81 82 83 84 85 86 87 88 89 90 91
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
92

93 94
    Returns:
        None
L
lujun 已提交
95

Y
yuyang18 已提交
96
    Examples:
97
    
98 99
        .. code-block:: python

100
            import paddle
L
lujun 已提交
101
            import numpy
102
            paddle.enable_static()
Y
yuyang18 已提交
103

104 105 106
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
107
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
108
    """
L
lujun 已提交
109

110
    ex = _switch_scope(scope)
111 112 113 114
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
115 116


117
def as_numpy(tensor, copy=False):
118 119 120
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
121

122
    Examples:
123 124 125 126 127 128 129 130 131 132
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
133 134 135

    Args:
       tensor(Variable): a instance of Tensor
136
       copy(bool, optional): Whether to use deep copy.
137 138 139 140

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
141
    if isinstance(tensor, core.LoDTensorArray):
142
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
143
    if isinstance(tensor, list):
144
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
145 146
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
147
    if len(lod) > 0:
D
dzhwinter 已提交
148
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
149 150 151
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
152
    if tensor._is_initialized():
153 154 155 156
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
157 158
    else:
        return None
D
dzhwinter 已提交
159 160


H
Huihuang Zheng 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
185 186
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


214
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
215 216
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
217
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
218 219 220

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
221 222
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
223 224 225 226
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
227
        feed (LoDTensor): the fed value, which must be a LoDTensor
228 229
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
230 231 232 233 234 235 236
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
237 238
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
239
            raise ValueError(
T
tianshuo78520a 已提交
240 241
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
242
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
243
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
244 245 246 247 248
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
249 250
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
251 252 253
    return True


254 255 256 257 258 259 260 261 262 263 264 265
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
266 267
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
268 269 270
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
271
        A boolean value that indicates whether a block has feed operators
272 273 274 275 276 277 278 279 280 281
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
282 283 284
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
285 286 287 288 289 290 291 292
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


293 294 295 296
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
297
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
298

299 300 301 302 303 304 305 306 307
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
308 309 310
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
311
        fetch_op: the operator name of fetch
312

X
xuwei06 已提交
313 314 315
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
316 317 318 319
    """

    fetch_count = 0
    for op in block.ops:
320
        if op.desc.type() == fetch_op:
321 322 323 324 325 326
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
327 328 329
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
330 331 332 333 334 335 336 337
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
338
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
339
    """
C
chengduoZH 已提交
340 341 342
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
343
    Args:
344 345 346 347
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
348 349 350 351
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
352 353 354
    Returns:
       LodTensor|numpy.ndarray
    """
355
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
356 357
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
358
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
359

360
    var = scope.find_var(_to_name_str(name))
361 362 363 364
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
365 366
    tensor = var.get_tensor()
    if return_numpy:
367
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
368 369 370
    return tensor


X
polish  
Xin Pan 已提交
371
def _to_name_str(var):
372

373 374 375 376 377 378 379 380
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
381
            return str(id(var))
382 383 384 385 386 387 388 389 390 391
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
392
    else:
393
        return _to_str(var)
Q
qiaolongfei 已提交
394 395


396 397 398 399 400
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
401
    from ..distributed.fleet import fleet
L
Leo Chen 已提交
402 403 404
    # use standalone_executor by default if not distributed
    if fleet._role_maker is None and framework._enable_standalone_executor_ is None:
        framework._enable_standalone_executor_ = 1
405

L
Leo Chen 已提交
406
    if framework._enable_standalone_executor_ in [1, '1', True, 'True', 'true']:
407
        flag = True
408

409 410 411
    return flag


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


429
def _get_strong_program_cache_key(program, feed, fetch_list):
430
    # NOTE(xiongkun) id(proram) may be duplicate. So add addition var_name as cache key.
431 432 433 434 435 436 437 438
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
439 440
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
441 442


X
polish  
Xin Pan 已提交
443
def _get_program_cache_key(feed, fetch_list):
444 445 446 447 448 449
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
450
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
451 452 453
    return str(feed_var_names + fetch_var_names)


454
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
468
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
469
            data(core.Place): the place of created tensor
470
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
471 472 473 474

        Returns:
            LoDTensor
        """
475
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
476
    if not isinstance(data, np.ndarray):
477 478 479
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
480 481
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
482 483
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
484
            if data.dtype == np.object_:
485 486 487 488 489 490 491 492 493 494
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
495

496
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
497 498 499 500 501
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


502
class FetchHandler(object):
503

D
Dong Daxiang 已提交
504 505 506
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
507 508
        self.period_secs = period_secs

D
Dong Daxiang 已提交
509 510 511 512 513
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
514 515 516 517

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
518 519 520 521 522 523 524 525
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
526 527 528
""")


529
class _StandaloneExecutor(object):
530

531
    def __init__(self, place, main_program, scope):
532 533 534
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
535
        self._scope = scope
536 537
        self._new_exe = self._create_new_executor()

538
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
539 540
        """
        Args:
541
            feed_names(list): This parameter represents the input names of the model.
542 543 544 545 546 547 548 549
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

550 551
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
552 553 554 555 556 557
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
558
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
614

615 616 617 618 619 620
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}


Y
Yu Yang 已提交
621
class Executor(object):
622
    """
623 624
    :api_attr: Static Graph

625
    An Executor in Python, supports single/multiple-GPU running,
626
    and single/multiple-CPU running.
C
chengduo 已提交
627 628

    Args:
629
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
630 631 632 633
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
634
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
635 636 637
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
638 639 640

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
641

642
    Examples:
S
Fix doc  
sneaxiy 已提交
643 644
        .. code-block:: python

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

696 697
    """

698 699
    def __init__(self, place=None):
        if place is None:
700 701
            expected_place = framework._current_expected_place()
            self.place = expected_place
702
        else:
703
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
704
        self.program_caches = dict()
705
        self.ctx_caches = dict()
706
        self.trainer_caches = dict()
707 708
        self.scope_caches = dict()
        self.var_caches = dict()
709
        self.pruned_program_caches = dict()
710 711 712
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
713
        self._closed = False
714
        self.pruned_program_scope_caches = dict()
715
        self._prepare_to_run_called = False
D
dzhwinter 已提交
716

717 718 719
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

720 721 722 723
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

724 725
        self._fleet_executor = None

726 727 728
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

729 730 731
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

732 733 734
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
735 736 737 738 739 740
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

741 742 743 744 745 746 747 748 749 750 751 752
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

753 754 755
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

756 757 758
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

759 760 761
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

762 763 764 765 766 767
    def _add_feed_fetch_ops(self,
                            program,
                            feed,
                            fetch_list,
                            feed_var_name,
                            fetch_var_name,
768
                            use_fetch_v2=False):
Q
Qiao Longfei 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
792 793
                if global_block.has_var(name):
                    out = global_block.var(name)
794 795 796 797
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
798 799 800 801
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
802 803 804 805 806

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'
807

Q
Qiao Longfei 已提交
808
        # append fetch_operators
809 810
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
Q
Qiao Longfei 已提交
811
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
812
                assert isinstance(var, Variable) or isinstance(
813 814 815 816 817 818 819
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
Q
Qiao Longfei 已提交
820 821 822 823 824

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
825 826
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
827 828 829
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
830
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
831 832 833 834 835
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
836 837 838 839 840 841 842 843
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
844
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
845 846 847
        ]
        return outs

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
877
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
878 879
                    type(item))

880
        for index, item in enumerate(fetch_list):
881 882 883 884 885 886 887
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
888 889
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
890 891 892
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1006 1007 1008 1009 1010 1011
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1012 1013
    def close(self):
        """
C
chengduo 已提交
1014 1015 1016
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1017

C
chengduo 已提交
1018 1019
        Returns:
            None
1020 1021 1022 1023

        Examples:
            .. code-block:: python

1024
              import paddle
1025

1026 1027
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1028 1029
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1030
        """
1031
        if not self._closed:
Y
Yancey1989 已提交
1032
            self._closed = True
1033 1034 1035 1036
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1037

X
fix  
Xin Pan 已提交
1038
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1039
                      return_numpy, return_merged):
1040
        from paddle.optimizer.lr import LRScheduler
1041
        exe = program._executor
H
Huihuang Zheng 已提交
1042 1043 1044 1045 1046
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1047 1048 1049 1050
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1051
                var = global_block.var(feed_name) if need_check_feed else None
1052
                if not isinstance(feed_tensor, core.LoDTensor):
1053
                    # always set to CPU place, since the tensor need to be split
1054
                    # it is fast in CPU
1055
                    feed_tensor = _as_lodtensor(feed[feed_name],
1056 1057
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1058
                if need_check_feed:
1059
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1060
                feed_tensor_dict[feed_name] = feed_tensor
1061
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1072 1073
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1074
                    if not isinstance(tensor, core.LoDTensor):
1075
                        tensor = _as_lodtensor(each[feed_name],
1076 1077
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1078 1079
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1080 1081
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1082

1083
            exe.feed_tensors_into_local_scopes(res)
1084

1085 1086
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1087
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1088 1089 1090
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1091 1092 1093 1094 1095 1096
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1097 1098
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1099

X
polish  
Xin Pan 已提交
1100
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1101
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1102
        return as_numpy(tensors) if return_numpy else tensors
1103

Y
Yu Yang 已提交
1104
    def run(self,
Y
Yu Yang 已提交
1105
            program=None,
1106 1107
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1108
            feed_var_name='feed',
Y
Yu Yang 已提交
1109
            fetch_var_name='fetch',
D
dzhwinter 已提交
1110
            scope=None,
1111
            return_numpy=True,
Z
Zhen Wang 已提交
1112
            use_program_cache=False,
1113 1114
            return_merged=True,
            use_prune=False):
1115
        """
C
chengduo 已提交
1116 1117 1118
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1119 1120
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1121

C
chengduo 已提交
1122 1123 1124
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1125
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1126
                The default is None.
1127
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1128
                If it is single card training, the feed is dict type, and if it is multi-card
1129
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1130 1131 1132 1133 1134 1135 1136
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1137
            fetch_list(list): This parameter represents the Tensors that need to be returned
1138
                after the model runs. The default is None. 
1139
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1140
                the feed operator. The default is "feed".
1141
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1142 1143
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1144 1145 1146
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1147 1148 1149
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1150 1151
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1152
                The default is False.
1153
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1154 1155
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1156 1157 1158 1159 1160 1161 1162 1163
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1164 1165 1166 1167 1168 1169 1170
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1187 1188
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1189

1190
        Examples:
1191
            .. code-block:: python
1192
                :name: code-example-1
1193

1194 1195
                import paddle
                import numpy
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1209

1210 1211
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1212

1213 1214 1215 1216 1217
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1218 1219

            .. code-block:: python
1220
                :name: code-example-2
Z
Zhen Wang 已提交
1221

1222
                # required: gpu
1223
                import paddle
Z
Zhen Wang 已提交
1224 1225 1226
                import numpy as np

                # First create the Executor.
1227 1228 1229
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1230

1231
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1232
                class_dim = 2
1233 1234 1235
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1236 1237 1238
                adam.minimize(loss)

                # Run the startup program once and only once.
1239 1240 1241 1242 1243
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1244 1245 1246 1247
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1248 1249 1250 1251
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1252 1253 1254 1255
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1256 1257
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1258 1259 1260
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1261 1262 1263 1264
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1265 1266
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1267 1268
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1269
                print(merged_prediction)
1270

Z
Zhen Wang 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1285

1286
        """
C
chengduo 已提交
1287
        try:
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1298 1299
            core.update_autotune_status()
            return res
C
chengduo 已提交
1300
        except Exception as e:
1301
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1302 1303

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1304
                  fetch_var_name, scope, return_numpy, use_program_cache,
1305
                  return_merged, use_prune):
Y
Yancey1989 已提交
1306 1307 1308
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1309
        use_default_main_program = program is None
1310 1311
        if program is None:
            program = default_main_program()
1312

1313
        fetch_list = self._check_fetch_list(fetch_list)
1314 1315

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1316
            if "fleet_opt" in program._pipeline_opt:
1317 1318 1319
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1320 1321 1322
                return self._run_using_fleet_executor(program=program,
                                                      feed=feed,
                                                      fetch_list=fetch_list)
1323 1324 1325
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1326 1327 1328
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1329 1330

        if isinstance(program, Program) and program._heter_pipeline_opt:
1331 1332
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1333
            ## change default executor
1334 1335 1336 1337 1338 1339
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1340
            if "startup_program" in program._heter_pipeline_opt:
1341
                #print("get startup_program from _pipeline_opt")
1342 1343
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1344
        if isinstance(program, Program) and \
1345
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1346
            if use_default_main_program:
1347 1348 1349 1350 1351 1352 1353 1354
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1355
            warnings.warn(error_info)
1356

1357 1358
        if scope is None:
            scope = global_scope()
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1392
        def _can_use_interpreter_core(program, place):
1393 1394
            if core.is_compiled_with_mlu() or isinstance(
                    place, core.CustomPlace):
1395 1396
                return False

1397 1398
            compiled = isinstance(program, compiler.CompiledProgram)
            if compiled:
1399 1400 1401 1402
                # Unsupported case 1 : the CompiledProgram is constructed by Graph
                if program._program is None:
                    return False

P
pangyoki 已提交
1403
                # Unsupported case 2: data parallel
1404
                if program._is_data_parallel and len(
1405 1406
                        program._get_places(place, program._places)) != 1:
                    return False
1407

P
pangyoki 已提交
1408 1409 1410 1411 1412 1413
                # Unsupported case 3 : parallel graph
                if core.globals()['FLAGS_enable_parallel_graph'] in [
                        1, '1', True, 'True', 'true'
                ]:
                    return False

1414 1415 1416
                # Unsupported case 4: inference
                if program._is_inference:
                    return False
1417

1418 1419 1420 1421
                # Unsupported case 5: CUDA Graph
                if program._build_strategy is not None and program._build_strategy.allow_cuda_graph_capture:
                    return False

1422 1423 1424 1425 1426 1427
                # Unsupported case 6: distributed
                if program._build_strategy is not None and (
                        program._build_strategy.is_distribution
                        or program._build_strategy.num_trainers > 1):
                    return False

1428
                # Unsupported case 6 : disabled by FLAGS_CONVERT_GRAPH_TO_PROGRAM
P
pangyoki 已提交
1429 1430 1431 1432
                if os.environ.get('FLAGS_CONVERT_GRAPH_TO_PROGRAM',
                                  None) not in [1, '1', True, 'True', 'true']:
                    return False

1433
                return True
1434
            else:
1435 1436
                if isinstance(program._graph, compiler.CompiledProgram):
                    return False
1437 1438 1439
                assert isinstance(program, Program)
                return True

1440 1441
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1442
        if return_merged and self._enable_interpreter_core and _can_use_interpreter_core(
1443 1444
                program, self.place):
            inner_program = program._program if isinstance(
1445
                program, compiler.CompiledProgram) else program
1446
            if not inner_program._is_start_up_program_:
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
                if feed is None:
                    feed = {}
                elif isinstance(feed, (list, tuple)):
                    assert len(feed) == 1, "Not compiled with data parallel"
                    feed = feed[0]
                if not isinstance(feed, dict):
                    raise TypeError(
                        "feed requires dict as its Parameter. But you passed in %s"
                        % (type(feed)))
                feed = self._update_feed(program, feed)
1457 1458 1459 1460 1461 1462 1463

                key = _get_strong_program_cache_key(inner_program, feed,
                                                    fetch_list)

                # a little bit tricy here, use inner_program before _add_feed_fetch_ops to get key
                # while use program to geet _StandaloneExecutor
                if key not in self._executor_cache._cached_executors:
1464
                    # To apply IR pass, compile the Program to IrGraph and convert it back to Program
1465
                    if isinstance(program, compiler.CompiledProgram):
1466
                        # print(f"Program before convert:\n {inner_program}", flush=True)
1467
                        program._compile(scope, self.place)
1468
                        ir_graph = framework.IrGraph(program._graph)
1469
                        inner_program = ir_graph.to_program()
1470
                        # print(f"Program after convert:\n {inner_program}", flush=True)
P
pangyoki 已提交
1471 1472 1473
                        logging.warning(
                            "FLAGS_USE_STANDALONE_EXECUTOR and FLAGS_CONVERT_GRAPH_TO_PROGRAM is set to 1. Graph will be converted to Program and executed using new executor."
                        )
L
levi131 已提交
1474 1475 1476 1477 1478
                    else:
                        from paddle.incubate.autograd import prim_enabled, prim2orig
                        if prim_enabled() and program == default_main_program():
                            prim2orig()

1479 1480 1481 1482 1483 1484 1485 1486
                    program = self._add_feed_fetch_ops(
                        program=inner_program,
                        feed=feed,
                        fetch_list=fetch_list,
                        feed_var_name=feed_var_name,
                        fetch_var_name=fetch_var_name,
                        use_fetch_v2=True)

1487 1488 1489
                    new_program = program.clone()
                    new_exe = _StandaloneExecutor(self.place, new_program,
                                                  scope)
1490 1491
                    self._executor_cache._cached_executors[key] = (new_program,
                                                                   new_exe)
1492

1493
                program, new_exe = self._executor_cache._cached_executors[key]
1494

1495 1496 1497 1498 1499 1500 1501 1502
                self._feed_data(program, feed, feed_var_name, scope)
                if hasattr(program, 'lr_sheduler'):
                    from paddle.optimizer.lr import LRScheduler
                    assert isinstance(program.lr_sheduler,
                                      LRScheduler), "must be LRScheduler"
                    lr_sheduler = program.lr_sheduler
                    lr_value = lr_sheduler()
                    lr_var = program.global_block().vars[lr_sheduler._var_name]
1503 1504
                    data = np.array([lr_value
                                     ]).astype(convert_dtype(lr_var.dtype))
1505 1506
                    tensor = core.get_variable_tensor(scope,
                                                      lr_sheduler._var_name)
1507
                    # NOTE(dev): `set` always call TensorCopySync that is a
1508 1509
                    # blocking behavior. So we use `_copy_from` to replace it.
                    cpu_tensor = _as_lodtensor(data, core.CPUPlace())
A
Allen Guo 已提交
1510 1511 1512 1513 1514
                    # for ipu, tensor is allocated on cpu
                    if core.is_compiled_with_ipu():
                        tensor._copy_from(cpu_tensor, tensor._place())
                    else:
                        tensor._copy_from(cpu_tensor, self.place)
1515

P
pangyoki 已提交
1516 1517 1518 1519
                warnings.warn(
                    "FLAGS_USE_STANDALONE_EXECUTOR is set to 1. New executor is used to execute Program."
                )

1520 1521
                return new_exe.run(scope, list(feed.keys()), fetch_list,
                                   return_numpy)
1522

X
polish  
Xin Pan 已提交
1523
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1539
                    varobj.stop_gradient == True and \
1540 1541 1542 1543 1544
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1545 1546
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1547
        # For backward compatibility, run directly.
1548
        if not compiled:
1549 1550 1551
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1552

1553 1554 1555 1556 1557
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1574 1575

        program._compile(scope, self.place)
C
chengduo 已提交
1576 1577 1578
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1579 1580 1581 1582 1583 1584 1585
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1586

C
chengduo 已提交
1587
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1588
                     fetch_var_name, scope, return_numpy, use_program_cache):
1589
        from paddle.optimizer.lr import LRScheduler
1590 1591
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1592 1593 1594 1595
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1596
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1597 1598 1599
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1600

1601
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1602
        if not isinstance(program, Program):
D
dzhwinter 已提交
1603 1604 1605
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1606

1607 1608 1609 1610 1611
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1612
        if use_program_cache:
1613
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1614
            cached_program = self._get_program_cache(cache_key)
1615
            cached_ctx = self._get_ctx_cache(cache_key)
1616
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1617 1618 1619 1620 1621 1622 1623 1624
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1625
                fetch_list_str = list(map(_to_name_str, fetch_list))
1626
                cached_ctx = self._default_executor.prepare(
1627 1628 1629 1630 1631 1632 1633
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1634 1635
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1636
                self._add_ctx_cache(cache_key, cached_ctx)
1637
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1638
            program = cached_program
1639
            ctx = cached_ctx
1640
            scope = cached_scope
1641
        else:
1642 1643 1644 1645 1646
            program = self._add_feed_fetch_ops(program=program,
                                               feed=feed,
                                               fetch_list=fetch_list,
                                               feed_var_name=feed_var_name,
                                               fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1647 1648

        self._feed_data(program, feed, feed_var_name, scope)
1649 1650
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1651
                              LRScheduler), "must be LRScheduler"
1652 1653 1654 1655 1656 1657 1658
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1659
        if not use_program_cache:
C
chengduo 已提交
1660
            self._default_executor.run(program.desc, scope, 0, True, True,
1661
                                       [fetch_var_name])
1662
        else:
1663 1664
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1665
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1666
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1667
        if return_numpy:
1668 1669 1670
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1671

X
Xin Pan 已提交
1672 1673
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1674

1675
    def _check_fetch_list(self, fetch_list):
1676 1677
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1700 1701 1702
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1703 1704 1705

        return res

1706
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1707 1708
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1709
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1710 1711 1712
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1729 1730 1731 1732 1733 1734 1735 1736 1737
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1738
        is_heter = 0
T
Thunderbrook 已提交
1739
        use_ps_gpu = 0
T
Thunderbrook 已提交
1740 1741 1742
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1743
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1744
                is_heter = 1
T
Thunderbrook 已提交
1745 1746
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1747 1748 1749 1750
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1751 1752 1753
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1754
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1755 1756 1757 1758 1759
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1760
        if not compiled:
H
hutuxian 已提交
1761 1762 1763 1764
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1765 1766 1767
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1768 1769
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1770
                trainer._set_thread_barrier(program._is_distributed)
1771
            trainer._set_program(program)
T
Thunderbrook 已提交
1772 1773
            if is_heter:
                trainer._set_heter_info(ret)
1774
        else:
H
hutuxian 已提交
1775 1776 1777
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1778 1779 1780
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1781 1782 1783
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1784
            trainer._set_program(program.program)
H
hutuxian 已提交
1785

1786
        if thread <= 0:
T
Thunderbrook 已提交
1787 1788 1789
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1790
                raise RuntimeError(
1791 1792
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1793
            else:
1794
                trainer._set_thread(dataset.thread_num)
1795
        else:
1796
            trainer._set_thread(thread)
H
hutuxian 已提交
1797

1798 1799
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1800
        return scope, trainer
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1813 1814 1815 1816
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1817
            # The following fake dataset is created to call
1818 1819 1820 1821 1822
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1823 1824 1825 1826 1827 1828
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1829 1830 1831 1832
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1833 1834
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1835
            #print("test_fl_stage_id: {}".format(stage_id))
1836
            heter_place = program._heter_pipeline_opt["heter_place"]
1837
            if stage_id != 0:
1838 1839 1840 1841 1842
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1843
                    # The following fake dataset is created to call
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1855 1856 1857 1858
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1859 1860 1861 1862 1863
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1864 1865 1866
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1867 1868

        dataset._prepare_to_run()
1869 1870
        real_fetch_list = []
        if program._pipeline_opt:
1871
            real_program = program._pipeline_opt["section_program"]
1872 1873 1874 1875 1876 1877 1878 1879
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1894
            fetch_list = None
1895 1896 1897 1898 1899 1900 1901 1902
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
1903 1904 1905 1906

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1907
        if program._pipeline_opt is None:
1908 1909
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
1910 1911 1912
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
1913

T
tangwei12 已提交
1914
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1915

1916
        if program._heter_pipeline_opt is None:
1917
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
1928
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
1929 1930 1931
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
1932

T
tangwei12 已提交
1933 1934 1935 1936 1937 1938
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
1939 1940
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1941 1942
        else:
            self._default_executor.run_from_dataset(trainer_instance)
1943 1944
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1945 1946

        dataset._dynamic_adjust_after_train()
1947
        dataset._finish_to_run()
1948 1949 1950 1951
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1952

1953 1954
        return None

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2010 2011 2012 2013 2014
            real_program = self._add_feed_fetch_ops(program=real_program,
                                                    feed=[],
                                                    fetch_list=real_fetch_list,
                                                    feed_var_name='feed',
                                                    fetch_var_name='fetch')
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2030 2031 2032 2033 2034 2035 2036 2037
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
2038 2039 2040 2041 2042 2043 2044

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2045 2046 2047
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2048 2049 2050
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2051 2052 2053 2054
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2055
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2056

2057 2058
        return ctx

2059 2060 2061 2062 2063 2064 2065
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
                                        fleet_opt=None):
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2066
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2067
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2068
        nrank = len(trainer_endpoints)
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2079
        else:
2080 2081 2082 2083 2084 2085 2086 2087
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2088
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
                    fleet_opt.get('dist_strategy', {}), nrank)
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2106 2107
        place = core.Place()
        place.set_place(self.place)
2108 2109
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2110
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2111
                                  num_micro_batches, tasks, task_id_to_rank, [])
2112

L
LiYuRio 已提交
2113 2114
    def _run_using_fleet_executor(self,
                                  program=None,
2115 2116 2117 2118 2119 2120
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
                                  fetch_list=None):
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2121
        cached_scope = self._get_scope_cache(cache_key)
2122 2123 2124 2125
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2126 2127
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2128 2129 2130 2131 2132 2133 2134 2135 2136
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
            cached_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)
2137 2138 2139 2140 2141 2142 2143 2144
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2145
            self._add_program_cache(cache_key, cached_program)
2146
            fleet_opt = program._pipeline_opt["fleet_opt"]
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2158 2159 2160
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2181 2182 2183 2184
            self._prepare_fleet_executor_carrier(cache_key,
                                                 program=cached_program,
                                                 scope=cached_scope,
                                                 fleet_opt=fleet_opt)
2185

2186
        if feed:
2187 2188 2189
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2190
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2203 2204
        self._fleet_executor.run(cache_key)

2205 2206 2207 2208
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2209 2210
        return None

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2229 2230 2231 2232
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

    def _add_fetch_ops(self,
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2267 2268 2269 2270 2271 2272 2273
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2274 2275 2276

        return tmp_program

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2289
        scope, real_fetch_list, trainer_instance = \
2290 2291 2292 2293 2294
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2305 2306
        self._default_executor.run_from_dataset(trainer_instance)

2307 2308 2309
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2310 2311 2312 2313 2314 2315 2316
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2317 2318 2319 2320 2321
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2322 2323 2324
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2325 2326
                           print_period=100,
                           fetch_handler=None):
2327
        """
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2339

2340 2341
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2342
                if not provided, then default_main_program (not compiled) will be used.
2343
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2344 2345
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2346
            scope(Scope): the scope used to run this program, you can switch it to different scope
2347 2348 2349
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2350
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2351
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2352
                training, default is None
2353
            fetch_info(String List): print information for each Tensor, default is None
2354
            print_period(int): the number of mini-batches for each print, default is 100
2355
            fetch_handler(FetchHandler): a user define class for fetch output.
2356

2357 2358 2359 2360
        Returns:
            None

        Examples:
2361 2362

            .. code-block:: python
2363

2364
                import paddle
2365

2366 2367 2368 2369 2370 2371
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2372
                dataset.set_use_var([x, y])
2373
                dataset.set_thread(1)
2374 2375
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2376
                dataset.set_filelist(filelist)
2377 2378 2379
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2380

2381
        """
2382 2383 2384
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2385

T
Thunderbrook 已提交
2386 2387 2388 2389 2390 2391 2392 2393
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2394 2395 2396 2397 2398 2399 2400 2401
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2402

2403
        trainer._set_infer(False)
T
Thunderbrook 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2425 2426 2427 2428 2429 2430 2431 2432
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2433 2434
                           print_period=100,
                           fetch_handler=None):
2435 2436 2437 2438 2439 2440 2441 2442
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2443

2444 2445 2446 2447
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2448
                if not provided, then default_main_program (not compiled) will be used.
2449
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2450 2451
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2452
            scope(Scope): the scope used to run this program, you can switch it to different scope
2453 2454 2455
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2456
            debug(bool): whether a user wants to run train_from_dataset 
2457
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2458
                during training
2459
            fetch_info(String List): print information for each Tensor, its length should be equal
2460 2461
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2462
            fetch_handler(FetchHandler): a user define class for fetch output.
2463 2464 2465

        Returns:
            None
2466
        
2467
        Examples:
2468
        
2469 2470
            .. code-block:: python

2471
              import paddle
2472

2473 2474 2475 2476 2477 2478
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2479
              dataset.set_use_var([x, y])
2480
              dataset.set_thread(1)
2481 2482
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2483
              dataset.set_filelist(filelist)
2484 2485
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2486
                                     dataset=dataset)
2487 2488

        """
2489 2490 2491
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)