executor.py 87.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37

T
Tink_Y 已提交
38
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40
g_scope = core.Scope()
F
flame 已提交
41 42
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
43

Y
Yu Yang 已提交
44

Y
Yang Yu 已提交
45
def global_scope():
Y
yuyang18 已提交
46
    """
47 48
    :api_attr: Static Graph

Y
yuyang18 已提交
49 50 51
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
52 53 54
    Returns:
        Scope: The global/default scope instance.

55 56 57
    Examples:
        .. code-block:: python

58
          import paddle
59 60
          import numpy

61 62
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
63
    """
Y
Yang Yu 已提交
64 65 66
    return g_scope


67
def _switch_scope(scope):
Y
Yang Yu 已提交
68 69 70 71 72 73
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
74
@signature_safe_contextmanager
Y
Yang Yu 已提交
75
def scope_guard(scope):
Y
yuyang18 已提交
76
    """
77 78
    :api_attr: Static Graph
    
79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96 97
        .. code-block:: python

98
            import paddle
L
lujun 已提交
99
            import numpy
100
            paddle.enable_static()
Y
yuyang18 已提交
101

102 103 104
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
105
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
106
    """
L
lujun 已提交
107

108
    ex = _switch_scope(scope)
109 110 111 112
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
113 114


115
def as_numpy(tensor, copy=False):
116 117 118
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
119

120
    Examples:
121 122 123 124 125 126 127 128 129 130
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
131 132 133

    Args:
       tensor(Variable): a instance of Tensor
134
       copy(bool, optional): Whether to use deep copy.
135 136 137 138

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
139
    if isinstance(tensor, core.LoDTensorArray):
140
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
141
    if isinstance(tensor, list):
142
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
143 144
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
145
    if len(lod) > 0:
D
dzhwinter 已提交
146
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
147 148 149
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
150
    if tensor._is_initialized():
151 152 153 154
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
155 156
    else:
        return None
D
dzhwinter 已提交
157 158


H
Huihuang Zheng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
183 184
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


212
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
213 214
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
215
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
216 217 218

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
219 220
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
221 222 223 224
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
225
        feed (LoDTensor): the fed value, which must be a LoDTensor
226 227
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
228 229 230 231 232 233 234
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
235 236
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
237
            raise ValueError(
T
tianshuo78520a 已提交
238 239
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
240
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
241
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
242 243 244 245 246
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
247 248
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
249 250 251
    return True


252 253 254 255 256 257 258 259 260 261 262 263
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
264 265
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
266 267 268
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
269
        A boolean value that indicates whether a block has feed operators
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
292

293 294 295 296 297 298 299 300 301
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
302 303 304
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
305

X
xuwei06 已提交
306 307 308
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
330
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
331
    """
C
chengduoZH 已提交
332 333 334
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
335
    Args:
336 337 338 339
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
340 341 342 343
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
344 345 346
    Returns:
       LodTensor|numpy.ndarray
    """
347
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
348 349
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
350
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
351

352
    var = scope.find_var(_to_name_str(name))
353 354 355 356
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
357 358
    tensor = var.get_tensor()
    if return_numpy:
359
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
360 361 362
    return tensor


X
polish  
Xin Pan 已提交
363
def _to_name_str(var):
364 365 366 367 368 369 370 371
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
372
            return str(id(var))
373 374 375 376 377 378 379 380 381 382
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
383
    else:
384
        return _to_str(var)
Q
qiaolongfei 已提交
385 386


387 388 389 390 391 392 393 394 395 396 397
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
    env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', None)
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
    return flag


398 399 400 401
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
402
def _get_program_cache_key(feed, fetch_list):
403 404 405 406 407 408
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
409
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
410 411 412
    return str(feed_var_names + fetch_var_names)


413
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
427
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
428
            data(core.Place): the place of created tensor
429
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
430 431 432 433

        Returns:
            LoDTensor
        """
434
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
435
    if not isinstance(data, np.ndarray):
436 437 438
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
439 440
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
441 442 443 444 445 446 447 448 449 450 451 452 453
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
454

455
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
456 457 458 459 460
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


461
class FetchHandler(object):
D
Dong Daxiang 已提交
462 463 464
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
465 466
        self.period_secs = period_secs

D
Dong Daxiang 已提交
467 468 469 470 471
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
472 473 474 475

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
476 477 478 479 480 481 482 483
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
484 485 486
""")


487
class _StandaloneExecutor(object):
488
    def __init__(self, place, main_program, scope):
489 490 491
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
492
        self._scope = scope
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        self._new_exe = self._create_new_executor()

    def run(self, feed, fetch_list, return_numpy=True):
        """
        Args:
            feed(list|dict): This parameter represents the input Tensors of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list of Tensors. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        feed = self._update_feed(feed)
        fetch_list = self._check_fetch(fetch_list)

        tensors = self._new_exe.run(feed, fetch_list)._move_to_list()
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
527
                                          self._main_program.desc, self._scope)
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}

588 589
    def run(self, program, scope, feed, fetch_list, return_numpy=True):
        new_exe = self._get_exe_from_cache(program, scope)
590 591
        return new_exe.run(feed, fetch_list, return_numpy)

592
    def _get_exe_from_cache(self, program, scope):
593 594 595 596 597 598 599 600
        """
        Return cached _StandaloneExecutor instance. If not found, create associated 
        _StandaloneExecutor instance with given program and cache it.
        """
        assert isinstance(
            program, Program), "Required type(Program), but received {}".format(
                type(program).__name__)
        if program not in self._cached_executors:
601
            new_exe = _StandaloneExecutor(self._place, program, scope)
602 603 604 605 606
            self._cached_executors[program] = new_exe

        return self._cached_executors[program]


Y
Yu Yang 已提交
607
class Executor(object):
608
    """
609 610
    :api_attr: Static Graph

611
    An Executor in Python, supports single/multiple-GPU running,
612
    and single/multiple-CPU running.
C
chengduo 已提交
613 614

    Args:
615
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
616 617 618 619
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
620 621
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
            is the index of the GPUs.
C
chengduo 已提交
622 623 624

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
625

626
    Examples:
S
Fix doc  
sneaxiy 已提交
627 628
        .. code-block:: python

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

680 681
    """

682 683
    def __init__(self, place=None):
        if place is None:
684 685
            expected_place = framework._current_expected_place()
            self.place = expected_place
686
        else:
687
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
688
        self.program_caches = dict()
689
        self.ctx_caches = dict()
690 691
        self.scope_caches = dict()
        self.var_caches = dict()
692
        self.pruned_program_caches = dict()
693 694 695
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
696
        self._closed = False
697
        self.pruned_program_scope_caches = dict()
698
        self._prepare_to_run_called = False
D
dzhwinter 已提交
699

700 701 702
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

703 704 705 706
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

707 708 709
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

710 711 712
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
713 714 715 716 717 718
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

719 720 721 722 723 724 725 726 727 728 729 730
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

731 732 733
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

734 735 736
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
762 763 764 765 766 767 768 769 770 771 772
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
773 774 775
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
776 777 778
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
779 780 781 782 783 784 785 786 787 788
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
789 790
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
791 792 793
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
794
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
795 796 797 798 799
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
800 801 802 803 804 805 806 807
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
808
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
809 810 811
        ]
        return outs

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

844
        for index, item in enumerate(fetch_list):
845 846 847 848 849 850 851
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
852 853 854 855
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".
                        format(index, index, index, type(item[0]).__name__))
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
969 970 971 972 973 974
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
975 976
    def close(self):
        """
C
chengduo 已提交
977 978 979
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
980

C
chengduo 已提交
981 982
        Returns:
            None
983 984 985 986

        Examples:
            .. code-block:: python

987
              import paddle
988

989 990
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
991 992
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
993
        """
994 995
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
996
            self._closed = True
Y
Yancey1989 已提交
997

X
fix  
Xin Pan 已提交
998
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
999
                      return_numpy, return_merged):
1000
        from paddle.optimizer.lr import LRScheduler
1001
        exe = program._executor
H
Huihuang Zheng 已提交
1002 1003 1004 1005 1006
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1007 1008 1009 1010
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1011
                var = global_block.var(feed_name) if need_check_feed else None
1012
                if not isinstance(feed_tensor, core.LoDTensor):
1013
                    # always set to CPU place, since the tensor need to be split
1014
                    # it is fast in CPU
1015 1016 1017
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
1018
                if need_check_feed:
1019
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1020
                feed_tensor_dict[feed_name] = feed_tensor
1021
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1032 1033
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1034
                    if not isinstance(tensor, core.LoDTensor):
1035 1036 1037
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
1038 1039
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1040 1041
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1042

1043
            exe.feed_tensors_into_local_scopes(res)
1044

1045 1046
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1047
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1048 1049 1050
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1051 1052 1053 1054 1055 1056 1057 1058 1059
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
                exe.feed_and_split_tensor_into_local_scopes({
                    lr_sheduler._var_name: lr_tensor
                })
1060

X
polish  
Xin Pan 已提交
1061
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1062
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1063
        return as_numpy(tensors) if return_numpy else tensors
1064

Y
Yu Yang 已提交
1065
    def run(self,
Y
Yu Yang 已提交
1066
            program=None,
1067 1068
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1069
            feed_var_name='feed',
Y
Yu Yang 已提交
1070
            fetch_var_name='fetch',
D
dzhwinter 已提交
1071
            scope=None,
1072
            return_numpy=True,
Z
Zhen Wang 已提交
1073
            use_program_cache=False,
1074 1075
            return_merged=True,
            use_prune=False):
1076
        """
C
chengduo 已提交
1077 1078 1079
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1080 1081
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1082

C
chengduo 已提交
1083 1084 1085
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1086
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1087
                The default is None.
1088
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1089
                If it is single card training, the feed is dict type, and if it is multi-card
1090
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1091 1092 1093 1094 1095 1096 1097
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1098
            fetch_list(list): This parameter represents the Tensors that need to be returned
1099
                after the model runs. The default is None. 
1100
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1101
                the feed operator. The default is "feed".
1102
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1103 1104
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1105 1106 1107
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1108 1109 1110
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1111 1112
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1113
                The default is False.
1114
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1115 1116
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1117 1118 1119 1120 1121 1122 1123 1124
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1125 1126 1127 1128 1129 1130 1131
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1148 1149
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1150

Z
Zhen Wang 已提交
1151
        Examples 1:
1152 1153
            .. code-block:: python

1154 1155
                import paddle
                import numpy
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1169

1170 1171
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1172

1173 1174 1175 1176 1177
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1178 1179 1180 1181

        Examples 2:
            .. code-block:: python

1182
                import paddle
Z
Zhen Wang 已提交
1183 1184 1185
                import numpy as np

                # First create the Executor.
1186 1187 1188
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1189

1190
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1191
                class_dim = 2
1192 1193 1194
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1195 1196 1197
                adam.minimize(loss)

                # Run the startup program once and only once.
1198 1199 1200 1201 1202
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1203 1204 1205 1206
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1207 1208 1209 1210
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1211 1212 1213 1214
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1215 1216
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1217 1218 1219
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1220 1221 1222 1223
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1224 1225
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1226 1227
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1228
                print(merged_prediction)
1229
 
Z
Zhen Wang 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1244

1245
        """
C
chengduo 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1255
                use_program_cache=use_program_cache,
1256
                use_prune=use_prune,
Z
Zhen Wang 已提交
1257
                return_merged=return_merged)
C
chengduo 已提交
1258
        except Exception as e:
1259
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1260 1261

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1262
                  fetch_var_name, scope, return_numpy, use_program_cache,
1263
                  return_merged, use_prune):
Y
Yancey1989 已提交
1264 1265 1266
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1267
        use_default_main_program = program is None
1268 1269
        if program is None:
            program = default_main_program()
1270

1271
        fetch_list = self._check_fetch_list(fetch_list)
1272 1273

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1274 1275 1276 1277 1278
            if "fleet_opt" in program._pipeline_opt:
                return self._run_using_fleet_executor(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
1279 1280 1281
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1282 1283 1284 1285
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
C
chengduo 已提交
1286
        if isinstance(program, Program) and \
1287
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1288
            if use_default_main_program:
1289 1290 1291 1292 1293 1294 1295 1296
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1297
            warnings.warn(error_info)
1298

1299 1300
        if scope is None:
            scope = global_scope()
1301

1302 1303 1304
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
        if self._enable_interpreter_core and not program._is_start_up_program_:
1305
            return self._executor_cache.run(program, scope, feed, fetch_list,
1306 1307
                                            return_numpy)

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1340
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1356
                    varobj.stop_gradient == True and \
1357 1358 1359 1360 1361
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1362 1363
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1364
        # For backward compatibility, run directly.
1365
        if not compiled:
1366 1367 1368
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1384
            return self._run_program(
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1395 1396 1397
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1398
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1399
                program,
1400 1401 1402
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1403
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1404 1405
                return_numpy=return_numpy,
                return_merged=return_merged)
1406

C
chengduo 已提交
1407
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1408
                     fetch_var_name, scope, return_numpy, use_program_cache):
1409
        from paddle.optimizer.lr import LRScheduler
1410 1411
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1412 1413 1414 1415
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1416
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1417 1418 1419
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1420

1421
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1422
        if not isinstance(program, Program):
D
dzhwinter 已提交
1423 1424 1425
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1426

1427 1428 1429 1430 1431
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1432
        if use_program_cache:
1433
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1434
            cached_program = self._get_program_cache(cache_key)
1435
            cached_ctx = self._get_ctx_cache(cache_key)
1436
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1437 1438 1439 1440 1441 1442 1443 1444
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1445
                fetch_list_str = list(map(_to_name_str, fetch_list))
1446
                cached_ctx = self._default_executor.prepare(
1447 1448 1449 1450 1451 1452 1453
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1454 1455
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1456
                self._add_ctx_cache(cache_key, cached_ctx)
1457
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1458
            program = cached_program
1459
            ctx = cached_ctx
1460
            scope = cached_scope
1461
        else:
Q
Qiao Longfei 已提交
1462 1463 1464 1465 1466 1467 1468 1469
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1470 1471
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1472
                              LRScheduler), "must be LRScheduler"
1473 1474 1475 1476 1477 1478 1479
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1480
        if not use_program_cache:
C
chengduo 已提交
1481
            self._default_executor.run(program.desc, scope, 0, True, True,
1482
                                       [fetch_var_name])
1483
        else:
1484 1485
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1486
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1487
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1488
        if return_numpy:
1489 1490 1491
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1492

X
Xin Pan 已提交
1493 1494
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    def _check_fetch_list(self, fetch_list):
        is_fetch_var = lambda var: isinstance(var, (Variable, str, six.string_types))
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".
                    format(i, type(var).__name__))

        return res

1525 1526
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1527
            fout.write(str(trainer))
1528
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1529 1530 1531
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1548 1549 1550 1551 1552 1553 1554 1555 1556
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1557
        is_heter = 0
T
Thunderbrook 已提交
1558
        use_ps_gpu = 0
T
Thunderbrook 已提交
1559 1560 1561
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1562
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1563
                is_heter = 1
T
Thunderbrook 已提交
1564 1565
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1566 1567 1568 1569
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1570 1571 1572
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1573
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1574 1575 1576 1577 1578
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1579
        if not compiled:
H
hutuxian 已提交
1580 1581 1582 1583 1584 1585
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1586
                trainer._set_thread_barrier(program._is_distributed)
1587
            trainer._set_program(program)
T
Thunderbrook 已提交
1588 1589
            if is_heter:
                trainer._set_heter_info(ret)
1590
        else:
H
hutuxian 已提交
1591 1592 1593 1594 1595 1596
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1597
            trainer._set_program(program.program)
H
hutuxian 已提交
1598

1599
        if thread <= 0:
T
Thunderbrook 已提交
1600 1601 1602
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1603
                raise RuntimeError(
1604 1605
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1606
            else:
1607
                trainer._set_thread(dataset.thread_num)
1608
        else:
1609
            trainer._set_thread(thread)
H
hutuxian 已提交
1610

1611 1612
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1613
        return scope, trainer
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1636 1637 1638 1639 1640 1641
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1642 1643 1644 1645 1646 1647 1648
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1649 1650

        dataset._prepare_to_run()
1651 1652
        real_fetch_list = []
        if program._pipeline_opt:
1653
            real_program = program._pipeline_opt["section_program"]
1654 1655 1656 1657 1658 1659 1660 1661
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1676
            fetch_list = None
1677 1678 1679 1680 1681 1682

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1683 1684 1685 1686
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1687 1688 1689 1690

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1691 1692
        if program._pipeline_opt is None:
            self._dump_debug_info(program=program, trainer=trainer)
1693 1694 1695
        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
T
tangwei12 已提交
1696
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1697 1698 1699 1700

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1701 1702 1703 1704 1705 1706
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1707
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1708 1709 1710
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1711
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1712 1713

        dataset._dynamic_adjust_after_train()
1714
        dataset._finish_to_run()
1715 1716 1717 1718
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1719

1720 1721
        return None

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

            real_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
1820 1821 1822 1823
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
1824
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
1825

1826 1827
        return ctx

L
LiYuRio 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    def _run_using_fleet_executor(self,
                                  program=None,
                                  dataset=None,
                                  scope=None,
                                  thread=0,
                                  is_infer=False,
                                  debug=False,
                                  fetch_list=None,
                                  fetch_info=None,
                                  print_period=100,
                                  fetch_handler=None,
                                  use_program_cache=False):
        scope, real_fetch_list, trainer_instance = \
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)
        from ..distributed.fleet.proto import fleet_executor_desc_pb2
        from google.protobuf import text_format
        fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
        fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
        fleet_exe.init(program._pipeline_opt["section_program"].desc)
        fleet_exe.run()
        return None

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
1865
        scope, real_fetch_list, trainer_instance = \
1866 1867 1868 1869 1870
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1881 1882
        self._default_executor.run_from_dataset(trainer_instance)

1883 1884 1885
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

1886 1887 1888 1889 1890 1891 1892
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

1893 1894 1895 1896 1897
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1898 1899 1900
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1901 1902
                           print_period=100,
                           fetch_handler=None):
1903
        """
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1915

1916 1917
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1918
                if not provided, then default_main_program (not compiled) will be used.
1919
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1920 1921
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1922
            scope(Scope): the scope used to run this program, you can switch it to different scope
1923 1924 1925
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1926
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1927
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
1928
                training, default is None
1929
            fetch_info(String List): print information for each Tensor, default is None
1930
            print_period(int): the number of mini-batches for each print, default is 100
1931
            fetch_handler(FetchHandler): a user define class for fetch output.
1932

1933 1934 1935 1936
        Returns:
            None

        Examples:
1937 1938

            .. code-block:: python
1939

1940
                import paddle
1941

1942 1943 1944 1945 1946 1947
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
1948
                dataset.set_use_var([x, y])
1949
                dataset.set_thread(1)
1950 1951
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
1952
                dataset.set_filelist(filelist)
1953 1954 1955
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
1956

1957
        """
1958 1959 1960
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1961

T
Thunderbrook 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2016 2017 2018 2019 2020 2021 2022 2023
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2024 2025
                           print_period=100,
                           fetch_handler=None):
2026 2027 2028 2029 2030 2031 2032 2033
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2034

2035 2036 2037 2038
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2039
                if not provided, then default_main_program (not compiled) will be used.
2040
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2041 2042
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2043
            scope(Scope): the scope used to run this program, you can switch it to different scope
2044 2045 2046
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2047
            debug(bool): whether a user wants to run train_from_dataset 
2048
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2049
                during training
2050
            fetch_info(String List): print information for each Tensor, its length should be equal
2051 2052
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2053
            fetch_handler(FetchHandler): a user define class for fetch output.
2054 2055 2056

        Returns:
            None
2057
        
2058
        Examples:
2059
        
2060 2061
            .. code-block:: python

2062
              import paddle
2063

2064 2065 2066 2067 2068 2069
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2070
              dataset.set_use_var([x, y])
2071
              dataset.set_thread(1)
2072 2073
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2074
              dataset.set_filelist(filelist)
2075 2076
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2077
                                     dataset=dataset)
2078 2079

        """
2080 2081 2082
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)