executor.py 45.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
H
Huihuang Zheng 已提交
26
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32

T
Tink_Y 已提交
33
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35
g_scope = core.Scope()
F
flame 已提交
36 37
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
38

Y
Yu Yang 已提交
39

Y
Yang Yu 已提交
40
def global_scope():
Y
yuyang18 已提交
41 42 43 44
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

45 46 47 48 49 50 51 52 53
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
54 55 56
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
57 58 59
    return g_scope


60
def _switch_scope(scope):
Y
Yang Yu 已提交
61 62 63 64 65 66
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
67
@signature_safe_contextmanager
Y
Yang Yu 已提交
68
def scope_guard(scope):
Y
yuyang18 已提交
69
    """
70 71 72 73 74 75 76 77 78 79 80 81
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
82

83 84
    Returns:
        None
L
lujun 已提交
85

Y
yuyang18 已提交
86
    Examples:
87 88
        .. code-block:: python

89
            import paddle.fluid as fluid
L
lujun 已提交
90
            import numpy
Y
yuyang18 已提交
91

L
lujun 已提交
92 93 94 95
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
96
    """
L
lujun 已提交
97

98
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
99
    yield
100
    _switch_scope(ex)
Y
Yang Yu 已提交
101 102


D
dzhwinter 已提交
103
def as_numpy(tensor):
104 105 106
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
107

108
    Examples:
109 110 111 112 113 114 115 116 117 118
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
119 120 121 122 123 124 125

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
126 127
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
128 129 130 131
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
132
    if len(lod) > 0:
D
dzhwinter 已提交
133
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
134 135 136
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
137 138 139 140
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
141 142


H
Huihuang Zheng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


def check_feed_shape_type(var, feed):
    """
    Returns True if the variable doesn't require feed check or it is compatible
    with the shape and have same dtype as the feeded value.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
        feed (LoDTensor): the feeded value, which must be a LoDTensor
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
        if not dimension_is_compatible_with(feed.shape(), var.shape):
218 219 220 221
            raise ValueError(
                'The feeded Variable %r should have dimensions = %d, shape = '
                '%r, but received feeded shape %r' %
                (var.name, len(var.shape), var.shape, feed.shape()))
H
Huihuang Zheng 已提交
222
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
223 224 225 226 227 228 229
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
                'The data type of feeded Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
230 231 232
    return True


233 234 235 236 237 238 239 240 241 242 243 244
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
245 246
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
247 248 249
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
250
        A boolean value that indicates whether a block has feed operators
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
273

274 275 276 277 278 279 280 281 282
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
283 284 285
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
286

X
xuwei06 已提交
287 288 289
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
311
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
312
    """
C
chengduoZH 已提交
313 314 315
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
316
    Args:
317 318 319 320
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
321 322 323 324
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
325 326 327 328 329 330
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
331
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
332

Y
Yibing Liu 已提交
333
    var = scope.find_var(name)
334 335 336 337
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
338 339 340 341 342 343
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
344 345 346 347 348 349 350 351 352
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
353 354


355 356 357 358
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
359 360 361
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
362 363 364 365

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class FetchHandler(object):
    def __init__(self, fetch_target_names, period_secs=60, return_np=True):
        self.fetch_target_names = fetch_target_names
        self.period_secs = period_secs
        self.return_np = return_np

    def handler(self, fetch_target_vars):
        return

    @staticmethod
    def help():
        print("""
class FetchHandlerExamlpe(FetchHandler):
    def handler(self, fetch_target_vars):
        b_auc = fetch_target_vars[0]
        g_auc = fetch_target_vars[1]
                        
        print("b_auc: {}, g_auc: {} at time: {}".format(b_auc, g_auc, time.ctime()))
""")


Y
Yu Yang 已提交
418
class Executor(object):
419
    """
420 421 422 423 424 425 426 427 428 429 430
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
431

432
    Examples:
S
Fix doc  
sneaxiy 已提交
433 434
        .. code-block:: python

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
480

481
    Args:
482 483
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

484 485
    """

D
dzhwinter 已提交
486 487
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
488
        self.program_caches = dict()
489
        self.ctx_caches = dict()
490 491
        self.scope_caches = dict()
        self.var_caches = dict()
492 493 494
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
495
        self._closed = False
D
dzhwinter 已提交
496

497 498 499 500 501 502
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

503 504 505
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
506 507 508 509 510 511
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

512 513 514
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

515 516 517 518 519 520
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
547
                global_block._prepend_op(
Q
Qiao Longfei 已提交
548 549 550 551 552 553 554 555
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
556 557 558
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
559 560 561 562 563 564 565 566 567 568
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
569 570
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
571 572 573 574
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
575
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
576 577
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
578 579 580 581 582 583 584 585
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
586
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
587 588 589
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
590 591 592 593 594 595
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
596 597 598 599
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
600
        You can no longer use this executor after calling this method.
601 602 603 604 605 606 607 608 609 610 611 612
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
613
        """
614 615
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
616
            self._closed = True
Y
Yancey1989 已提交
617

X
fix  
Xin Pan 已提交
618
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
619
                      return_numpy):
620
        exe = program._executor
H
Huihuang Zheng 已提交
621 622 623 624 625
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
626 627 628 629 630 631
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
632
                    # always set to CPU place, since the tensor need to be split
633
                    # it is fast in CPU
634 635 636
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
637
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
638 639 640
                if need_check_feed:
                    var = global_block.var(feed_name)
                    check_feed_shape_type(var, feed_tensor)
641 642
                feed_tensor_dict[feed_name] = feed_tensor

643
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
644
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
645
            if len(feed) != len(program._places):
646 647 648 649 650 651 652 653 654 655 656 657 658 659
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
660 661 662
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
663
                        tmp.set(tensor, program._places[i])
664
                        tensor = tmp
H
Huihuang Zheng 已提交
665 666 667
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
668 669
                    res_dict[feed_name] = tensor
                res.append(res_dict)
670
            exe.feed_tensors_into_local_scopes(res)
671

X
polish  
Xin Pan 已提交
672
        fetch_var_names = list(map(_to_name_str, fetch_list))
673
        tensors = exe.run(fetch_var_names)._move_to_list()
674
        return as_numpy(tensors) if return_numpy else tensors
675

Y
Yu Yang 已提交
676
    def run(self,
Y
Yu Yang 已提交
677
            program=None,
678 679
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
680
            feed_var_name='feed',
Y
Yu Yang 已提交
681
            fetch_var_name='fetch',
D
dzhwinter 已提交
682
            scope=None,
683 684
            return_numpy=True,
            use_program_cache=False):
685
        """
686 687 688 689
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
690 691
        the variables(or names) that user want to get after program run.

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
717

718
        Args:
X
add doc  
Xin Pan 已提交
719
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
720
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
721
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
722 723 724 725 726 727 728 729
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
730
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
731 732 733 734 735 736
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
737 738 739
        Returns:

            list(numpy.array): fetch result according to fetch_list.
740
        """
C
chengduo 已提交
741 742 743 744 745 746 747 748 749 750 751 752
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
753 754
                warnings.warn(
                    "The following exception is not an EOF exception.")
755
            six.reraise(*sys.exc_info())
C
chengduo 已提交
756 757 758

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
759 760 761
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
762
        use_default_main_program = program is None
763 764
        if program is None:
            program = default_main_program()
C
chengduo 已提交
765
        if isinstance(program, Program) and \
766
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
767 768 769 770
            error_info = "The current program is empty."
            if use_default_main_program:
                error_info += " Maybe you should pass the Program or the CompiledProgram manually."
            warnings.warn(error_info)
771

772 773
        if scope is None:
            scope = global_scope()
774 775 776 777 778 779 780 781 782

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
783
            fetch_list = []
784

X
polish  
Xin Pan 已提交
785
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
786

X
polish  
Xin Pan 已提交
787
        # For backward compatibility, run directly.
788
        if not compiled:
C
chengduo 已提交
789
            return self._run_program(
790 791 792 793 794 795 796 797 798 799
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
800 801 802
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
803
            return self._run_parallel(
X
fix  
Xin Pan 已提交
804
                program,
805 806 807
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
808
                fetch_var_name=fetch_var_name,
809 810
                return_numpy=return_numpy)

C
chengduo 已提交
811
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
812
                     fetch_var_name, scope, return_numpy, use_program_cache):
813

814 815
        if feed is None:
            feed = {}
S
sneaxiy 已提交
816 817 818 819
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
820
        if not isinstance(feed, dict):
D
dzhwinter 已提交
821 822 823
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
824

825
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
826
        if not isinstance(program, Program):
D
dzhwinter 已提交
827 828 829
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
830

831
        if use_program_cache:
832
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
833
            cached_program = self._get_program_cache(cache_key)
834
            cached_ctx = self._get_ctx_cache(cache_key)
835 836
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
837 838 839 840 841 842 843 844
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
845
                fetch_list_str = list(map(_to_name_str, fetch_list))
846
                cached_ctx = self._default_executor.prepare_ctx_cache(
847 848 849 850 851 852 853 854 855
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
856
                self._add_ctx_cache(cache_key, cached_ctx)
857 858
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
859
            program = cached_program
860
            ctx = cached_ctx
861 862
            scope = cached_scope
            var = cached_var
863
        else:
Q
Qiao Longfei 已提交
864 865 866 867 868 869 870 871
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
872
        if not use_program_cache:
C
chengduo 已提交
873 874
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
875
        else:
C
chengduo 已提交
876 877
            self._default_executor.run_cached_prepared_ctx(ctx, scope, False,
                                                           False, False)
878 879
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
880
        if return_numpy:
881 882 883
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
884

X
Xin Pan 已提交
885 886
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
887

888 889
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
890
            fout.write(str(trainer))
891 892 893 894
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

911 912 913 914 915 916 917 918 919
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
920 921 922 923
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
924 925 926
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
927 928
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
929 930 931 932 933 934
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
935
            trainer._set_program(program)
936
        else:
H
hutuxian 已提交
937 938 939 940 941 942
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
943
            trainer._set_program(program.program)
H
hutuxian 已提交
944

945
        if thread <= 0:
D
dongdaxiang 已提交
946 947
            if dataset.thread_num <= 0:
                raise RuntimeError(
948 949
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
950
            else:
951
                trainer._set_thread(dataset.thread_num)
952
        else:
953
            trainer._set_thread(thread)
H
hutuxian 已提交
954

955 956
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
957
        return scope, trainer
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

        if program._pipeline_opt:
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        if fetch_handler is not None:
            fetch_instance = fetch_handler
        elif fetch_handler is None and fetch_list is not None:

            class FH(FetchHandler):
                def handler(self, fetch_target_vars):
                    for i in range(len(fetch_target_vars)):
                        print("{}: \n {}\n".format(fetch_info[i],
                                                   fetch_target_vars[i]))

            fetch_target_names = [var.name for var in fetch_list]
            fetch_instance = FH(fetch_target_names,
                                period_secs=print_period,
                                return_np=False)
        else:
            fetch_instance = FetchHandler([])

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

        scope0 = trainer_instance.get_worker_scope(0)

        fetch_monitor = FetchHandlerMonitor(scope0, fetch_instance)
        fetch_monitor.start()
        self._default_executor.run_from_dataset(trainer_instance)
        fetch_monitor.stop()
        dataset._finish_to_run()
        return None

1020 1021 1022 1023 1024
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1025 1026 1027
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1028 1029
                           print_period=100,
                           fetch_handler=None):
1030 1031 1032 1033 1034 1035
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
1036

1037 1038 1039 1040 1041
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
1042
               Please check the document of Dataset if needed. default is None
1043 1044 1045
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
1046 1047
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1048
            fetch_list(Variable List): fetch variable list, each variable
1049 1050 1051
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1052
            fetch_handler(FetchHandler): a user define class for fetch output.
1053

1054 1055 1056 1057
        Returns:
            None

        Examples:
1058 1059

            .. code-block:: python
1060

1061
                import paddle.fluid as fluid
1062 1063

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1064
                exe = fluid.Executor(place)
1065 1066
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1067 1068
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1069 1070
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1071 1072 1073 1074
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1075

1076
        """
1077 1078 1079
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1080 1081 1082 1083 1084 1085 1086 1087 1088

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1089 1090
                           print_period=100,
                           fetch_handler=None):
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
1117
            fetch_handler(FetchHandler): a user define class for fetch output.
1118 1119 1120

        Returns:
            None
1121
        
1122
        Examples:
1123
        
1124 1125 1126
            .. code-block:: python

              import paddle.fluid as fluid
1127 1128

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1129
              exe = fluid.Executor(place)
1130 1131
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1132 1133
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1134 1135
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1136 1137 1138 1139
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1140 1141

        """
1142 1143 1144
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)