executor.py 67.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33

T
Tink_Y 已提交
34
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
g_scope = core.Scope()
F
flame 已提交
37 38
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40

Y
Yang Yu 已提交
41
def global_scope():
Y
yuyang18 已提交
42
    """
43 44
    :api_attr: Static Graph

Y
yuyang18 已提交
45 46 47
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
48 49 50
    Returns:
        Scope: The global/default scope instance.

51 52 53 54 55 56 57 58
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
59
    """
Y
Yang Yu 已提交
60 61 62
    return g_scope


63
def _switch_scope(scope):
Y
Yang Yu 已提交
64 65 66 67 68 69
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
70
@signature_safe_contextmanager
Y
Yang Yu 已提交
71
def scope_guard(scope):
Y
yuyang18 已提交
72
    """
73 74
    :api_attr: Static Graph
    
75 76 77 78 79 80 81 82 83 84 85 86
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
87

88 89
    Returns:
        None
L
lujun 已提交
90

Y
yuyang18 已提交
91
    Examples:
92 93
        .. code-block:: python

94
            import paddle.fluid as fluid
L
lujun 已提交
95
            import numpy
Y
yuyang18 已提交
96

L
lujun 已提交
97 98 99 100
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
101
    """
L
lujun 已提交
102

103
    ex = _switch_scope(scope)
104 105 106 107
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
108 109


D
dzhwinter 已提交
110
def as_numpy(tensor):
111 112 113
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
114

115
    Examples:
116 117 118 119 120 121 122 123 124 125
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
126 127 128 129 130 131 132

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
133 134
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
135 136 137 138
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
139
    if len(lod) > 0:
D
dzhwinter 已提交
140
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
141 142 143
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
144 145 146 147
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
148 149


H
Huihuang Zheng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
174 175
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


203
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
204 205
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
206
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
207 208 209

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
210 211
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
212 213 214 215
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
216
        feed (LoDTensor): the fed value, which must be a LoDTensor
217 218
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
219 220 221 222 223 224 225
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
226 227
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
228
            raise ValueError(
T
tianshuo78520a 已提交
229 230
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
231
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
232
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
233 234 235 236 237
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
238 239
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
240 241 242
    return True


243 244 245 246 247 248 249 250 251 252 253 254
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
255 256
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
257 258 259
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
260
        A boolean value that indicates whether a block has feed operators
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
283

284 285 286 287 288 289 290 291 292
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
293 294 295
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
296

X
xuwei06 已提交
297 298 299
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
321
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
322
    """
C
chengduoZH 已提交
323 324 325
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
326
    Args:
327 328 329 330
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
331 332 333 334
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
335 336 337
    Returns:
       LodTensor|numpy.ndarray
    """
338
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
339 340
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
341
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
342

343
    var = scope.find_var(_to_name_str(name))
344 345 346 347
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
348 349 350 351 352 353
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
354
def _to_name_str(var):
355 356 357 358 359 360 361 362
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
363
            return str(id(var))
364 365 366 367 368 369 370 371 372 373
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
374
    else:
375
        return _to_str(var)
Q
qiaolongfei 已提交
376 377


378 379 380 381
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
382
def _get_program_cache_key(feed, fetch_list):
383 384 385 386 387 388
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
389
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
390 391 392
    return str(feed_var_names + fetch_var_names)


393
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
407
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
408
            data(core.Place): the place of created tensor
409
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
410 411 412 413

        Returns:
            LoDTensor
        """
414
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
415
    if not isinstance(data, np.ndarray):
416 417 418
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
419 420
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
421 422 423 424 425 426 427 428 429 430 431 432 433
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
434

435
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
436 437 438 439 440
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


441
class FetchHandler(object):
D
Dong Daxiang 已提交
442 443 444
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
445 446
        self.period_secs = period_secs

D
Dong Daxiang 已提交
447 448 449 450 451
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
452 453 454 455

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
456 457 458 459 460 461 462 463
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
464 465 466
""")


Y
Yu Yang 已提交
467
class Executor(object):
468
    """
469 470
    :api_attr: Static Graph

471
    An Executor in Python, supports single/multiple-GPU running,
472
    and single/multiple-CPU running.
C
chengduo 已提交
473 474

    Args:
475 476 477 478 479
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)|None): This parameter represents
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
C
chengduo 已提交
480 481 482

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
483

484
    Examples:
S
Fix doc  
sneaxiy 已提交
485 486
        .. code-block:: python

487 488 489 490 491
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

492 493 494 495 496 497 498
          # Set place explicitly.
          # use_cuda = True
          # place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          # exe = fluid.Executor(place)

          # If you don't set place, PaddlePaddle sets the default device.
          exe = fluid.Executor()
499 500 501 502

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
503
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
521 522 523 524 525
          # NOTE: If you use CPU to run the program or Paddle is
          # CPU version, you need to specify the CPU_NUM, otherwise,
          # fluid will use all the number of the logic core as
          # the CPU_NUM, in that case, the batch size of the input
          # should be greater than CPU_NUM, if not, the process will be
526
          # failed by an exception.
527 528 529 530 531 532

          # Set place explicitly.
          # if not use_cuda:
          #     os.environ['CPU_NUM'] = str(2)

          # If you don't set place and PaddlePaddle is CPU version
533
          os.environ['CPU_NUM'] = str(2)
534 535 536 537 538 539 540

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
541 542
    """

543 544 545 546 547 548 549 550
    def __init__(self, place=None):
        if place is None:
            if core.is_compiled_with_cuda():
                self.place = core.CUDAPlace(0)
            else:
                self.place = core.CPUPlace()
        else:
            self.place = place
Q
qiaolongfei 已提交
551
        self.program_caches = dict()
552
        self.ctx_caches = dict()
553 554
        self.scope_caches = dict()
        self.var_caches = dict()
555
        self.pruned_program_caches = dict()
556 557 558
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
559
        self._closed = False
560
        self.pruned_program_scope_caches = dict()
D
dzhwinter 已提交
561

562 563 564
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

565 566 567
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
568 569 570 571 572 573
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

574 575 576 577 578 579 580 581 582 583 584 585
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

586 587 588
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

589 590 591
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
617 618 619 620 621 622 623 624 625 626 627
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
628 629 630
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
631 632 633
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
634 635 636 637 638 639 640 641 642 643
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
644 645
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
646 647 648
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
649
                var = global_block.var(feed_target_name)
650 651
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
H
Huihuang Zheng 已提交
652
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
653 654 655 656 657 658 659 660
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
661
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
662 663 664
        ]
        return outs

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

        for item in fetch_list:
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
818 819 820 821 822 823
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
824 825
    def close(self):
        """
C
chengduo 已提交
826 827 828
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
829

C
chengduo 已提交
830 831
        Returns:
            None
832 833 834 835 836 837 838 839 840 841

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
842
        """
843 844
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
845
            self._closed = True
Y
Yancey1989 已提交
846

X
fix  
Xin Pan 已提交
847
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
848
                      return_numpy, return_merged):
849
        exe = program._executor
H
Huihuang Zheng 已提交
850 851 852 853 854
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
855 856 857 858
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
859
                var = global_block.var(feed_name) if need_check_feed else None
860
                if not isinstance(feed_tensor, core.LoDTensor):
861
                    # always set to CPU place, since the tensor need to be split
862
                    # it is fast in CPU
863 864 865
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
866
                if need_check_feed:
867
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
868 869
                feed_tensor_dict[feed_name] = feed_tensor

870
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
871 872 873 874 875 876 877 878 879
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
880 881
                    var = global_block.var(
                        feed_name) if need_check_feed else None
882
                    if not isinstance(tensor, core.LoDTensor):
883 884 885
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
886 887
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
888 889
                    res_dict[feed_name] = tensor
                res.append(res_dict)
890
            exe.feed_tensors_into_local_scopes(res)
891

X
polish  
Xin Pan 已提交
892
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
893
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
894
        return as_numpy(tensors) if return_numpy else tensors
895

Y
Yu Yang 已提交
896
    def run(self,
Y
Yu Yang 已提交
897
            program=None,
898 899
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
900
            feed_var_name='feed',
Y
Yu Yang 已提交
901
            fetch_var_name='fetch',
D
dzhwinter 已提交
902
            scope=None,
903
            return_numpy=True,
Z
Zhen Wang 已提交
904
            use_program_cache=False,
905 906
            return_merged=True,
            use_prune=False):
907
        """
C
chengduo 已提交
908 909 910 911 912
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
913

C
chengduo 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
930
                after the model runs. The default is None. 
C
chengduo 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
Z
Zhen Wang 已提交
945 946 947
            return_merged(bool): This parameter indicates whether fetched variables (the variables
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
948 949 950 951 952 953 954 955
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
956 957 958 959 960 961 962
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
981

Z
Zhen Wang 已提交
982
        Examples 1:
983 984 985 986 987 988 989 990 991
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
992
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
993 994 995 996
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)
997 998
              i = fluid.layers.zeros(shape=[1], dtype='int64')
              array = fluid.layers.array_write(x=loss, i=i)
999 1000 1001 1002 1003

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
1004 1005 1006 1007
              loss_val, array_val = exe.run(feed={'X': x},
                                            fetch_list=[loss.name, array.name])
              print(array_val)
              # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        Examples 2:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # First create the Executor.
                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)

                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                class_dim = 2
                prediction = fluid.layers.fc(input=data, size=class_dim)
                loss = fluid.layers.mean(prediction)
                adam = fluid.optimizer.Adam()
                adam.minimize(loss)

                # Run the startup program once and only once.
                exe.run(fluid.default_startup_program())
                build_strategy = fluid.BuildStrategy()
                binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name, build_strategy=build_strategy)
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
                unmerged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=False)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
                print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
                merged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=True)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
                print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
                print(merged_prediction)

                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1068
        """
C
chengduo 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1078
                use_program_cache=use_program_cache,
1079
                use_prune=use_prune,
Z
Zhen Wang 已提交
1080
                return_merged=return_merged)
C
chengduo 已提交
1081
        except Exception as e:
1082
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1083 1084

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1085
                  fetch_var_name, scope, return_numpy, use_program_cache,
1086
                  return_merged, use_prune):
Y
Yancey1989 已提交
1087 1088 1089
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1090
        use_default_main_program = program is None
1091 1092
        if program is None:
            program = default_main_program()
C
chengduo 已提交
1093
        if isinstance(program, Program) and \
1094
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1095
            if use_default_main_program:
1096 1097 1098 1099 1100 1101 1102 1103
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1104
            warnings.warn(error_info)
1105

1106 1107
        if scope is None:
            scope = global_scope()
1108 1109

        if fetch_list is not None:
1110 1111 1112
            if isinstance(fetch_list, Variable) or isinstance(
                    fetch_list, str) or isinstance(fetch_list,
                                                   six.string_types):
1113 1114 1115 1116 1117 1118
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
1119
            fetch_list = []
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1153
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1154

X
polish  
Xin Pan 已提交
1155
        # For backward compatibility, run directly.
1156
        if not compiled:
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1174
            return self._run_program(
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1185 1186 1187
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1188
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1189
                program,
1190 1191 1192
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1193
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1194 1195
                return_numpy=return_numpy,
                return_merged=return_merged)
1196

C
chengduo 已提交
1197
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1198
                     fetch_var_name, scope, return_numpy, use_program_cache):
1199

1200 1201
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1202 1203 1204 1205
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1206
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1207 1208 1209
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1210

1211
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1212
        if not isinstance(program, Program):
D
dzhwinter 已提交
1213 1214 1215
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1216

1217
        if use_program_cache:
1218
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1219
            cached_program = self._get_program_cache(cache_key)
1220
            cached_ctx = self._get_ctx_cache(cache_key)
1221
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1222 1223 1224 1225 1226 1227 1228 1229
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1230
                fetch_list_str = list(map(_to_name_str, fetch_list))
1231
                cached_ctx = self._default_executor.prepare(
1232 1233 1234 1235 1236 1237 1238
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1239 1240
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1241
                self._add_ctx_cache(cache_key, cached_ctx)
1242
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1243
            program = cached_program
1244
            ctx = cached_ctx
1245
            scope = cached_scope
1246
        else:
Q
Qiao Longfei 已提交
1247 1248 1249 1250 1251 1252 1253 1254
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1255
        if not use_program_cache:
C
chengduo 已提交
1256 1257
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
1258
        else:
1259 1260
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1261
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1262
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1263
        if return_numpy:
1264 1265 1266
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1267

X
Xin Pan 已提交
1268 1269
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1270

1271 1272
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1273
            fout.write(str(trainer))
1274
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1275 1276 1277
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1294 1295 1296 1297 1298 1299 1300 1301 1302
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1303 1304 1305 1306 1307 1308
        is_heter = 0
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
            if program._fleet_opt("trainer", "") == "HeterXpuTrainer":
                is_heter = 1
D
dongdaxiang 已提交
1309 1310 1311 1312
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1313 1314 1315
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1316
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1317 1318 1319 1320 1321
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1322
        if not compiled:
H
hutuxian 已提交
1323 1324 1325 1326 1327 1328
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1329
                trainer._set_thread_barrier(program._is_distributed)
1330
            trainer._set_program(program)
T
Thunderbrook 已提交
1331 1332
            if is_heter:
                trainer._set_heter_info(ret)
1333
        else:
H
hutuxian 已提交
1334 1335 1336 1337 1338 1339
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1340
            trainer._set_program(program.program)
H
hutuxian 已提交
1341

1342
        if thread <= 0:
D
dongdaxiang 已提交
1343 1344
            if dataset.thread_num <= 0:
                raise RuntimeError(
1345 1346
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1347
            else:
1348
                trainer._set_thread(dataset.thread_num)
1349
        else:
1350
            trainer._set_thread(thread)
H
hutuxian 已提交
1351

1352 1353
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1354
        return scope, trainer
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1386 1387 1388 1389 1390 1391 1392 1393

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1394 1395 1396 1397
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1398 1399 1400 1401 1402

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1403
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1404 1405 1406 1407

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1408 1409 1410 1411 1412 1413
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1414
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1415 1416 1417
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1418
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1419 1420

        dataset._dynamic_adjust_after_train()
1421
        dataset._finish_to_run()
T
tangwei12 已提交
1422

1423 1424
        return None

1425 1426 1427 1428 1429
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1430 1431 1432
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1433 1434
                           print_period=100,
                           fetch_handler=None):
1435
        """
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1447

1448 1449
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1450
                if not provided, then default_main_program (not compiled) will be used.
1451
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1452 1453
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1454
            scope(Scope): the scope used to run this program, you can switch it to different scope
1455 1456 1457
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1458
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1459 1460
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1461 1462
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1463
            fetch_handler(FetchHandler): a user define class for fetch output.
1464

1465 1466 1467 1468
        Returns:
            None

        Examples:
1469 1470

            .. code-block:: python
1471

1472
                import paddle.fluid as fluid
1473 1474

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1475
                exe = fluid.Executor(place)
1476 1477
                x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
1478 1479
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1480 1481
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1482 1483 1484 1485
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1486

1487
        """
1488 1489 1490
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1491

T
Thunderbrook 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

1546 1547 1548 1549 1550 1551 1552 1553
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1554 1555
                           print_period=100,
                           fetch_handler=None):
1556 1557 1558 1559 1560 1561 1562 1563
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1564

1565 1566 1567 1568
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1569
                if not provided, then default_main_program (not compiled) will be used.
1570
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1571 1572
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1573
            scope(Scope): the scope used to run this program, you can switch it to different scope
1574 1575 1576
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1577
            debug(bool): whether a user wants to run train_from_dataset 
1578 1579 1580 1581 1582
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1583
            fetch_handler(FetchHandler): a user define class for fetch output.
1584 1585 1586

        Returns:
            None
1587
        
1588
        Examples:
1589
        
1590 1591 1592
            .. code-block:: python

              import paddle.fluid as fluid
1593 1594

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1595
              exe = fluid.Executor(place)
1596 1597
              x = fluid.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = fluid.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
1598 1599
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1600 1601
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1602 1603 1604 1605
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1606 1607

        """
1608 1609 1610
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)