executor.py 106.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37
from .compiler import _prune_feed_ops
38

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78
    
79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96
    
97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
D
dzhwinter 已提交
147
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
148 149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
151
    if tensor._is_initialized():
152 153 154 155
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
156 157
    else:
        return None
D
dzhwinter 已提交
158 159


H
Huihuang Zheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
184 185
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


213
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
214 215
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
216
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
217 218 219

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
220 221
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
222 223 224 225
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
226
        feed (LoDTensor): the fed value, which must be a LoDTensor
227 228
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
229 230 231 232 233 234 235
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
236 237
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
238
            raise ValueError(
T
tianshuo78520a 已提交
239 240
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
241
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
242
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
243 244 245 246 247
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
248 249
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
250 251 252
    return True


253 254 255 256 257 258 259 260 261 262 263 264
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
265 266
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
267 268 269
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
270
        A boolean value that indicates whether a block has feed operators
271 272 273 274 275 276 277 278 279 280
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
281 282 283
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
                        feed_target_name))
284 285 286 287 288 289 290 291
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


292 293 294 295
def has_fetch_operators(block,
                        fetch_targets,
                        fetch_holder_name,
                        fetch_op='fetch'):
296
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
297

298 299 300 301 302 303 304 305 306
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
307 308 309
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
310
        fetch_op: the operator name of fetch
311

X
xuwei06 已提交
312 313 314
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
315 316 317 318
    """

    fetch_count = 0
    for op in block.ops:
319
        if op.desc.type() == fetch_op:
320 321 322 323 324 325
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
326 327 328
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
                        fetch_target_name))
329 330 331 332 333 334 335 336
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
337
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
338
    """
C
chengduoZH 已提交
339 340 341
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
342
    Args:
343 344 345 346
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
347 348 349 350
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
351 352 353
    Returns:
       LodTensor|numpy.ndarray
    """
354
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
355 356
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
357
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
358

359
    var = scope.find_var(_to_name_str(name))
360 361 362 363
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
364 365
    tensor = var.get_tensor()
    if return_numpy:
366
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
367 368 369
    return tensor


X
polish  
Xin Pan 已提交
370
def _to_name_str(var):
371

372 373 374 375 376 377 378 379
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
380
            return str(id(var))
381 382 383 384 385 386 387 388 389 390
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
391
    else:
392
        return _to_str(var)
Q
qiaolongfei 已提交
393 394


395 396 397 398 399
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
400

401 402 403 404 405 406 407
    from ..distributed.fleet import fleet
    if fleet._role_maker is not None:
        warnings.warn("do not use standalone executor in fleet by default")
        env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', None)
    else:
        env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', '1')

408 409
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
410

411 412 413
    return flag


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


431
def _get_strong_program_cache_key(program, feed, fetch_list):
432
    # NOTE(xiongkun) id(proram) may be duplicate. So add addition var_name as cache key.
433 434 435 436 437 438 439 440
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

    inner_program = program._program if isinstance(
        program, compiler.CompiledProgram) else program
441 442
    return _get_varname_from_block(inner_program.blocks[0]) + str(
        id(program)) + _get_program_cache_key(feed, fetch_list)
443 444


X
polish  
Xin Pan 已提交
445
def _get_program_cache_key(feed, fetch_list):
446 447 448 449 450 451
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
452
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
453 454 455
    return str(feed_var_names + fetch_var_names)


456
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
470
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
471
            data(core.Place): the place of created tensor
472
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
473 474 475 476

        Returns:
            LoDTensor
        """
477
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
478
    if not isinstance(data, np.ndarray):
479 480 481
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
482 483
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
484 485
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
486
            if data.dtype == np.object_:
487 488 489 490 491 492 493 494 495 496
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
497

498
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
499 500 501 502 503
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


504
class FetchHandler(object):
505

D
Dong Daxiang 已提交
506 507 508
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
509 510
        self.period_secs = period_secs

D
Dong Daxiang 已提交
511 512 513 514 515
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
516 517 518 519

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
520 521 522 523 524 525 526 527
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
528 529 530
""")


531
class _StandaloneExecutor(object):
532

533
    def __init__(self, place, main_program, scope):
534 535 536
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
537
        self._scope = scope
538 539
        self._new_exe = self._create_new_executor()

540
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
541 542
        """
        Args:
543
            feed_names(list): This parameter represents the input names of the model.
544 545 546 547 548 549 550 551
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

552 553
        tensors = self._new_exe.run(scope, feed_names,
                                    fetch_list)._move_to_list()
554 555 556 557 558 559 560 561 562
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
563
                                          self._main_program.desc, self._scope)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
619

620 621 622 623 624 625
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}


Y
Yu Yang 已提交
626
class Executor(object):
627
    """
628 629
    :api_attr: Static Graph

630
    An Executor in Python, supports single/multiple-GPU running,
631
    and single/multiple-CPU running.
C
chengduo 已提交
632 633

    Args:
634
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
635 636 637 638
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
639
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
640 641 642
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_ 
C
chengduo 已提交
643 644 645

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
646

647
    Examples:
S
Fix doc  
sneaxiy 已提交
648 649
        .. code-block:: python

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

701 702
    """

703 704
    def __init__(self, place=None):
        if place is None:
705 706
            expected_place = framework._current_expected_place()
            self.place = expected_place
707
        else:
708
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
709
        self.program_caches = dict()
710
        self.ctx_caches = dict()
711
        self.trainer_caches = dict()
712 713
        self.scope_caches = dict()
        self.var_caches = dict()
714
        self.pruned_program_caches = dict()
715 716 717
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
718
        self._closed = False
719
        self.pruned_program_scope_caches = dict()
720
        self._prepare_to_run_called = False
D
dzhwinter 已提交
721

722 723 724
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

725 726 727 728
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

729 730
        self._fleet_executor = None

731 732 733
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

734 735 736
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

737 738 739
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
740 741 742 743 744 745
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

746 747 748 749 750 751 752 753 754 755 756 757
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

758 759 760
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

761 762 763
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

764 765 766
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

767 768 769 770 771 772
    def _add_feed_fetch_ops(self,
                            program,
                            feed,
                            fetch_list,
                            feed_var_name,
                            fetch_var_name,
773
                            use_fetch_v2=False):
Q
Qiao Longfei 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
797 798
                if global_block.has_var(name):
                    out = global_block.var(name)
799 800 801 802
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
803 804 805 806
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
807 808 809 810 811

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'
812

Q
Qiao Longfei 已提交
813
        # append fetch_operators
814 815
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
Q
Qiao Longfei 已提交
816
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
817
                assert isinstance(var, Variable) or isinstance(
818 819 820 821 822 823 824
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
Q
Qiao Longfei 已提交
825 826 827 828 829

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
830 831
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
832 833 834
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
835
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
836 837 838 839 840
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
841 842 843 844 845 846 847 848
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
849
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
850 851 852
        ]
        return outs

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
882
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
883 884
                    type(item))

885
        for index, item in enumerate(fetch_list):
886 887 888 889 890 891 892
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
893 894
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
895 896 897
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`."
                        .format(index, index, index,
                                type(item[0]).__name__))
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
1011 1012 1013 1014 1015 1016
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1017 1018
    def close(self):
        """
C
chengduo 已提交
1019 1020 1021
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1022

C
chengduo 已提交
1023 1024
        Returns:
            None
1025 1026 1027 1028

        Examples:
            .. code-block:: python

1029
              import paddle
1030

1031 1032
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1033 1034
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1035
        """
1036
        if not self._closed:
Y
Yancey1989 已提交
1037
            self._closed = True
1038 1039 1040 1041
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1042

X
fix  
Xin Pan 已提交
1043
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1044
                      return_numpy, return_merged):
1045
        from paddle.optimizer.lr import LRScheduler
1046
        exe = program._executor
H
Huihuang Zheng 已提交
1047 1048 1049 1050 1051
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1052 1053 1054 1055
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1056
                var = global_block.var(feed_name) if need_check_feed else None
1057
                if not isinstance(feed_tensor, core.LoDTensor):
1058
                    # always set to CPU place, since the tensor need to be split
1059
                    # it is fast in CPU
1060
                    feed_tensor = _as_lodtensor(feed[feed_name],
1061 1062
                                                core.CPUPlace(),
                                                var.dtype if var else None)
H
Huihuang Zheng 已提交
1063
                if need_check_feed:
1064
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1065
                feed_tensor_dict[feed_name] = feed_tensor
1066
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1077 1078
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1079
                    if not isinstance(tensor, core.LoDTensor):
1080
                        tensor = _as_lodtensor(each[feed_name],
1081 1082
                                               program._places[i],
                                               var.dtype if var else None)
H
Huihuang Zheng 已提交
1083 1084
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1085 1086
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1087

1088
            exe.feed_tensors_into_local_scopes(res)
1089

1090 1091
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1092
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1093 1094 1095
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1096 1097 1098 1099 1100 1101
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
1102 1103
                exe.feed_and_split_tensor_into_local_scopes(
                    {lr_sheduler._var_name: lr_tensor})
1104

X
polish  
Xin Pan 已提交
1105
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1106
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1107
        return as_numpy(tensors) if return_numpy else tensors
1108

Y
Yu Yang 已提交
1109
    def run(self,
Y
Yu Yang 已提交
1110
            program=None,
1111 1112
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1113
            feed_var_name='feed',
Y
Yu Yang 已提交
1114
            fetch_var_name='fetch',
D
dzhwinter 已提交
1115
            scope=None,
1116
            return_numpy=True,
Z
Zhen Wang 已提交
1117
            use_program_cache=False,
1118 1119
            return_merged=True,
            use_prune=False):
1120
        """
C
chengduo 已提交
1121 1122 1123
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1124 1125
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1126

C
chengduo 已提交
1127 1128 1129
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1130
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1131
                The default is None.
1132
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1133
                If it is single card training, the feed is dict type, and if it is multi-card
1134
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1135 1136 1137 1138 1139 1140 1141
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1142
            fetch_list(list): This parameter represents the Tensors that need to be returned
1143
                after the model runs. The default is None. 
1144
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1145
                the feed operator. The default is "feed".
1146
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1147 1148
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1149 1150 1151
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1152 1153 1154
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1155 1156
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1157
                The default is False.
1158
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1159 1160
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1161 1162 1163 1164 1165 1166 1167 1168
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1169 1170 1171 1172 1173 1174 1175
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1192 1193
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1194

Z
Zhen Wang 已提交
1195
        Examples 1:
1196 1197
            .. code-block:: python

1198 1199
                import paddle
                import numpy
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1213

1214 1215
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1216

1217 1218 1219 1220 1221
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1222 1223 1224 1225

        Examples 2:
            .. code-block:: python

1226
                import paddle
Z
Zhen Wang 已提交
1227 1228 1229
                import numpy as np

                # First create the Executor.
1230 1231 1232
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1233

1234
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1235
                class_dim = 2
1236 1237 1238
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1239 1240 1241
                adam.minimize(loss)

                # Run the startup program once and only once.
1242 1243 1244 1245 1246
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1247 1248 1249 1250
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1251 1252 1253 1254
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1255 1256 1257 1258
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1259 1260
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1261 1262 1263
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1264 1265 1266 1267
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1268 1269
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1270 1271
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1272
                print(merged_prediction)
1273
 
Z
Zhen Wang 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1288

1289
        """
C
chengduo 已提交
1290
        try:
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            res = self._run_impl(program=program,
                                 feed=feed,
                                 fetch_list=fetch_list,
                                 feed_var_name=feed_var_name,
                                 fetch_var_name=fetch_var_name,
                                 scope=scope,
                                 return_numpy=return_numpy,
                                 use_program_cache=use_program_cache,
                                 use_prune=use_prune,
                                 return_merged=return_merged)
1301 1302
            core.update_autotune_status()
            return res
C
chengduo 已提交
1303
        except Exception as e:
1304
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1305 1306

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1307
                  fetch_var_name, scope, return_numpy, use_program_cache,
1308
                  return_merged, use_prune):
Y
Yancey1989 已提交
1309 1310 1311
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1312
        use_default_main_program = program is None
1313 1314
        if program is None:
            program = default_main_program()
1315

1316
        fetch_list = self._check_fetch_list(fetch_list)
1317 1318

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1319
            if "fleet_opt" in program._pipeline_opt:
1320 1321 1322
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1323 1324 1325
                return self._run_using_fleet_executor(program=program,
                                                      feed=feed,
                                                      fetch_list=fetch_list)
1326 1327 1328
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1329 1330 1331
                return self._run_pipeline(program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache)
1332 1333

        if isinstance(program, Program) and program._heter_pipeline_opt:
1334 1335
            #print("program._heter_pipeline_opt: {}".format(
            #    program._heter_pipeline_opt))
1336
            ## change default executor
1337 1338 1339 1340 1341 1342
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1343
            if "startup_program" in program._heter_pipeline_opt:
1344
                #print("get startup_program from _pipeline_opt")
1345 1346
                program = program._heter_pipeline_opt["startup_program"]

C
chengduo 已提交
1347
        if isinstance(program, Program) and \
1348
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1349
            if use_default_main_program:
1350 1351 1352 1353 1354 1355 1356 1357
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1358
            warnings.warn(error_info)
1359

1360 1361
        if scope is None:
            scope = global_scope()
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1395
        def _can_use_interpreter_core(program, place):
1396 1397 1398
            if core.is_compiled_with_npu() or core.is_compiled_with_mlu(
            ) or core.is_compiled_with_ipu() or isinstance(
                    place, core.CustomPlace):
1399 1400
                return False

1401
            compiled = isinstance(program, compiler.CompiledProgram)
1402
            # print("compiled is : {}".format(compiled))
1403
            # NOTE(zhiqiu): do not support compiled program now
1404
            if compiled:
1405 1406 1407 1408 1409 1410
                return False
                # if program._is_data_parallel and len(
                #         program._get_places(place, program._places)) == 1:
                #     return True
                # else:
                #     return False
1411
            else:
1412 1413
                if isinstance(program._graph, compiler.CompiledProgram):
                    return False
1414 1415 1416
                assert isinstance(program, Program)
                return True

1417 1418
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1419 1420 1421
        if self._enable_interpreter_core and _can_use_interpreter_core(
                program, self.place):
            inner_program = program._program if isinstance(
1422
                program, compiler.CompiledProgram) else program
1423
            if not inner_program._is_start_up_program_:
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
                if feed is None:
                    feed = {}
                elif isinstance(feed, (list, tuple)):
                    assert len(feed) == 1, "Not compiled with data parallel"
                    feed = feed[0]
                if not isinstance(feed, dict):
                    raise TypeError(
                        "feed requires dict as its Parameter. But you passed in %s"
                        % (type(feed)))
                feed = self._update_feed(program, feed)
1434 1435 1436 1437 1438 1439 1440

                key = _get_strong_program_cache_key(inner_program, feed,
                                                    fetch_list)

                # a little bit tricy here, use inner_program before _add_feed_fetch_ops to get key
                # while use program to geet _StandaloneExecutor
                if key not in self._executor_cache._cached_executors:
1441 1442 1443 1444 1445 1446 1447 1448
                    program = self._add_feed_fetch_ops(
                        program=inner_program,
                        feed=feed,
                        fetch_list=fetch_list,
                        feed_var_name=feed_var_name,
                        fetch_var_name=fetch_var_name,
                        use_fetch_v2=True)

1449 1450 1451
                    new_program = program.clone()
                    new_exe = _StandaloneExecutor(self.place, new_program,
                                                  scope)
1452 1453
                    self._executor_cache._cached_executors[key] = (new_program,
                                                                   new_exe)
1454

1455
                program, new_exe = self._executor_cache._cached_executors[key]
1456

1457 1458 1459 1460 1461 1462 1463 1464
                self._feed_data(program, feed, feed_var_name, scope)
                if hasattr(program, 'lr_sheduler'):
                    from paddle.optimizer.lr import LRScheduler
                    assert isinstance(program.lr_sheduler,
                                      LRScheduler), "must be LRScheduler"
                    lr_sheduler = program.lr_sheduler
                    lr_value = lr_sheduler()
                    lr_var = program.global_block().vars[lr_sheduler._var_name]
1465 1466
                    data = np.array([lr_value
                                     ]).astype(convert_dtype(lr_var.dtype))
1467 1468
                    tensor = core.get_variable_tensor(scope,
                                                      lr_sheduler._var_name)
1469
                    # NOTE(dev): `set` always call TensorCopySync that is a
1470 1471 1472
                    # blocking behavior. So we use `_copy_from` to replace it.
                    cpu_tensor = _as_lodtensor(data, core.CPUPlace())
                    tensor._copy_from(cpu_tensor, self.place)
1473

1474 1475
                return new_exe.run(scope, list(feed.keys()), fetch_list,
                                   return_numpy)
1476

X
polish  
Xin Pan 已提交
1477
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1493
                    varobj.stop_gradient == True and \
1494 1495 1496 1497 1498
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1499 1500
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1501
        # For backward compatibility, run directly.
1502
        if not compiled:
1503 1504 1505
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1506

1507 1508 1509 1510 1511
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
                return self._run_parallel(program._graph,
                                          scope=scope,
                                          feed=feed,
                                          fetch_list=fetch_list,
                                          fetch_var_name=fetch_var_name,
                                          return_numpy=return_numpy,
                                          return_merged=return_merged)

            return self._run_program(program,
                                     feed=feed,
                                     fetch_list=fetch_list,
                                     feed_var_name=feed_var_name,
                                     fetch_var_name=fetch_var_name,
                                     scope=scope,
                                     return_numpy=return_numpy,
                                     use_program_cache=use_program_cache)
1528 1529

        program._compile(scope, self.place)
C
chengduo 已提交
1530 1531 1532
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1533 1534 1535 1536 1537 1538 1539
            return self._run_parallel(program,
                                      scope=scope,
                                      feed=feed,
                                      fetch_list=fetch_list,
                                      fetch_var_name=fetch_var_name,
                                      return_numpy=return_numpy,
                                      return_merged=return_merged)
1540

C
chengduo 已提交
1541
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1542
                     fetch_var_name, scope, return_numpy, use_program_cache):
1543
        from paddle.optimizer.lr import LRScheduler
1544 1545
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1546 1547 1548 1549
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1550
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1551 1552 1553
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1554

1555
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1556
        if not isinstance(program, Program):
D
dzhwinter 已提交
1557 1558 1559
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1560

1561 1562 1563 1564 1565
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1566
        if use_program_cache:
1567
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1568
            cached_program = self._get_program_cache(cache_key)
1569
            cached_ctx = self._get_ctx_cache(cache_key)
1570
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1571 1572 1573 1574 1575 1576 1577 1578
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1579
                fetch_list_str = list(map(_to_name_str, fetch_list))
1580
                cached_ctx = self._default_executor.prepare(
1581 1582 1583 1584 1585 1586 1587
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1588 1589
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1590
                self._add_ctx_cache(cache_key, cached_ctx)
1591
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1592
            program = cached_program
1593
            ctx = cached_ctx
1594
            scope = cached_scope
1595
        else:
1596 1597 1598 1599 1600
            program = self._add_feed_fetch_ops(program=program,
                                               feed=feed,
                                               fetch_list=fetch_list,
                                               feed_var_name=feed_var_name,
                                               fetch_var_name=fetch_var_name)
Q
Qiao Longfei 已提交
1601 1602

        self._feed_data(program, feed, feed_var_name, scope)
1603 1604
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1605
                              LRScheduler), "must be LRScheduler"
1606 1607 1608 1609 1610 1611 1612
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1613
        if not use_program_cache:
C
chengduo 已提交
1614
            self._default_executor.run(program.desc, scope, 0, True, True,
1615
                                       [fetch_var_name])
1616
        else:
1617 1618
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1619
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1620
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1621
        if return_numpy:
1622 1623 1624
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1625

X
Xin Pan 已提交
1626 1627
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1628

1629
    def _check_fetch_list(self, fetch_list):
1630 1631
        is_fetch_var = lambda var: isinstance(var,
                                              (Variable, str, six.string_types))
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1654 1655 1656
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}."
                    .format(i,
                            type(var).__name__))
1657 1658 1659

        return res

1660 1661
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1662
            fout.write(str(trainer))
1663
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1664 1665 1666
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1683 1684 1685 1686 1687 1688 1689 1690 1691
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1692
        is_heter = 0
T
Thunderbrook 已提交
1693
        use_ps_gpu = 0
T
Thunderbrook 已提交
1694 1695 1696
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1697
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1698
                is_heter = 1
T
Thunderbrook 已提交
1699 1700
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1701 1702 1703 1704
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1705 1706 1707
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1708
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1709 1710 1711 1712 1713
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1714
        if not compiled:
H
hutuxian 已提交
1715 1716 1717 1718
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1719 1720 1721
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1722 1723
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1724
                trainer._set_thread_barrier(program._is_distributed)
1725
            trainer._set_program(program)
T
Thunderbrook 已提交
1726 1727
            if is_heter:
                trainer._set_heter_info(ret)
1728
        else:
H
hutuxian 已提交
1729 1730 1731
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1732 1733 1734
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1735 1736 1737
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1738
            trainer._set_program(program.program)
H
hutuxian 已提交
1739

1740
        if thread <= 0:
T
Thunderbrook 已提交
1741 1742 1743
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1744
                raise RuntimeError(
1745 1746
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1747
            else:
1748
                trainer._set_thread(dataset.thread_num)
1749
        else:
1750
            trainer._set_thread(thread)
H
hutuxian 已提交
1751

1752 1753
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1754
        return scope, trainer
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1767 1768 1769 1770
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1771
            # The following fake dataset is created to call
1772 1773 1774 1775 1776
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1777 1778 1779 1780 1781 1782
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1783 1784 1785 1786
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1787 1788
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1789
            #print("test_fl_stage_id: {}".format(stage_id))
1790
            heter_place = program._heter_pipeline_opt["heter_place"]
1791
            if stage_id != 0:
1792 1793 1794 1795 1796
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
                    if dataset is not None:
                        raise RuntimeError(
                            "dataset should be None for heter pipeline mode")
1797
                    # The following fake dataset is created to call
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1809 1810 1811 1812
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1813 1814 1815 1816 1817
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1818 1819 1820
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1821 1822

        dataset._prepare_to_run()
1823 1824
        real_fetch_list = []
        if program._pipeline_opt:
1825
            real_program = program._pipeline_opt["section_program"]
1826 1827 1828 1829 1830 1831 1832 1833
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1848
            fetch_list = None
1849 1850 1851 1852 1853 1854 1855 1856
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
1857 1858 1859 1860

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1861
        if program._pipeline_opt is None:
1862 1863
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
1864 1865 1866
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
1867

T
tangwei12 已提交
1868
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1869

1870
        if program._heter_pipeline_opt is None:
1871
            trainer_instance = self._default_executor.init_for_dataset(  # -->InitForDataset
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
1882
                #print("test_fl_ps - trainer_desc: {}\n".format(trainer))
1883 1884 1885
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
1886

T
tangwei12 已提交
1887 1888 1889 1890 1891 1892
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
1893 1894
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1895 1896
        else:
            self._default_executor.run_from_dataset(trainer_instance)
1897 1898
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1899 1900

        dataset._dynamic_adjust_after_train()
1901
        dataset._finish_to_run()
1902 1903 1904 1905
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1906

1907 1908
        return None

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1964 1965 1966 1967 1968
            real_program = self._add_feed_fetch_ops(program=real_program,
                                                    feed=[],
                                                    fetch_list=real_fetch_list,
                                                    feed_var_name='feed',
                                                    fetch_var_name='fetch')
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

1984 1985 1986 1987 1988 1989 1990 1991
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=dataset,
                                               scope=scope,
                                               thread=thread,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
1992 1993 1994 1995 1996 1997 1998

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
1999 2000 2001
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2002 2003 2004
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2005 2006 2007 2008
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
2009
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
2010

2011 2012
        return ctx

2013 2014 2015 2016 2017 2018 2019
    def _prepare_fleet_executor_carrier(self,
                                        carrier_id="",
                                        program=None,
                                        scope=None,
                                        fleet_opt=None):
        num_micro_batches = fleet_opt[
            "num_micro_batches"] if "num_micro_batches" in fleet_opt else 1
2020
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2021
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2022
        nrank = len(trainer_endpoints)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, \
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. " \
            "Or you can provide a list of task nodes to init fleet executor directly."
        if 'tasks' in fleet_opt:
            assert 'task_id_to_rank' in fleet_opt, "If you provide tasks to init fleet executor," \
                                                   " task_id_to_rank should also be provided."
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2033
        else:
2034 2035 2036 2037 2038 2039 2040 2041
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
                from paddle.distributed.fleet.fleet_executor_utils import run1f1b
                if "dist_strategy" not in fleet_opt or \
                   "pp_degree" not in fleet_opt["dist_strategy"] or \
                   fleet_opt["dist_strategy"]["pp_degree"] == 1:
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2042
                    program, cur_rank, fleet_opt.get('num_micro_batches', 1),
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
                    fleet_opt.get('dist_strategy', {}), nrank)
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
                if "dist_strategy" in fleet_opt and \
                   "pp_degree" in fleet_opt["dist_strategy"]:
                    assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
                        "For pipeline mode, the scheduler should be 1F1B instead of Origin."
                if "num_micro_batches" in fleet_opt:
                    assert fleet_opt["num_micro_batches"] == 1, \
                        "For origin scheduler mode, the num micro batches should be 1."
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
                      "but received " + str(scheduler) + "."
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2060 2061
        place = core.Place()
        place.set_place(self.place)
2062 2063
        # NOTE: the last argument is used to force create some vars in root scope,
        # won't be used during train.
2064
        self._fleet_executor.init(carrier_id, program.desc, scope, place,
2065
                                  num_micro_batches, tasks, task_id_to_rank, [])
2066

L
LiYuRio 已提交
2067 2068
    def _run_using_fleet_executor(self,
                                  program=None,
2069 2070 2071 2072 2073 2074
                                  feed=None,
                                  feed_var_name="feed",
                                  fetch_var_name="fetch",
                                  fetch_list=None):
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2075
        cached_scope = self._get_scope_cache(cache_key)
2076 2077 2078 2079
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2080 2081
            assert program._pipeline_opt, "program should have _pipeline_opt to start carrier"
            real_feed = [] if feed is None else feed
2082 2083 2084 2085 2086 2087 2088 2089 2090
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
            cached_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)
2091 2092 2093 2094 2095 2096 2097 2098
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
2099
            self._add_program_cache(cache_key, cached_program)
2100
            fleet_opt = program._pipeline_opt["fleet_opt"]
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2112 2113 2114
                feed_program = self._add_feed_ops(program=feed_program,
                                                  feed=real_feed,
                                                  feed_var_name=feed_var_name)
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name)
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
                            core.op_proto_and_checker_maker.OpRole.Optimize)
                fetch_task.set_program(fetch_program)

2135 2136 2137 2138
            self._prepare_fleet_executor_carrier(cache_key,
                                                 program=cached_program,
                                                 scope=cached_scope,
                                                 fleet_opt=fleet_opt)
2139

2140
        if feed:
2141 2142 2143
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2144
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(cached_scope,
                                              lr_sheduler._var_name)
            tensor.set(data, self.place)

2157 2158
        self._fleet_executor.run(cache_key)

2159 2160 2161 2162
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2163 2164
        return None

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2183 2184 2185 2186
                    global_block._prepend_op(type='feed',
                                             inputs={'X': [feed_var]},
                                             outputs={'Out': [out]},
                                             attrs={'col': i})
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)

        return tmp_program

    def _add_fetch_ops(self,
                       program,
                       fetch_list,
                       fetch_var_name,
                       use_fetch_v2=False):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name,
                                   fetch_op):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2221 2222 2223 2224 2225 2226 2227
                    var,
                    six.string_types), ("Wrong type for fetch_list[%s]: %s" %
                                        (i, type(var)))
                global_block.append_op(type=fetch_op,
                                       inputs={'X': [var]},
                                       outputs={'Out': [fetch_var]},
                                       attrs={'col': i})
2228 2229 2230

        return tmp_program

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
2243
        scope, real_fetch_list, trainer_instance = \
2244 2245 2246 2247 2248
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

2259 2260
        self._default_executor.run_from_dataset(trainer_instance)

2261 2262 2263
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2264 2265 2266 2267 2268 2269 2270
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2271 2272 2273 2274 2275
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
2276 2277 2278
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2279 2280
                           print_period=100,
                           fetch_handler=None):
2281
        """
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2293

2294 2295
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2296
                if not provided, then default_main_program (not compiled) will be used.
2297
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2298 2299
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2300
            scope(Scope): the scope used to run this program, you can switch it to different scope
2301 2302 2303
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2304
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2305
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2306
                training, default is None
2307
            fetch_info(String List): print information for each Tensor, default is None
2308
            print_period(int): the number of mini-batches for each print, default is 100
2309
            fetch_handler(FetchHandler): a user define class for fetch output.
2310

2311 2312 2313 2314
        Returns:
            None

        Examples:
2315 2316

            .. code-block:: python
2317

2318
                import paddle
2319

2320 2321 2322 2323 2324 2325
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2326
                dataset.set_use_var([x, y])
2327
                dataset.set_thread(1)
2328 2329
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2330
                dataset.set_filelist(filelist)
2331 2332 2333
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2334

2335
        """
2336 2337 2338
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2339

T
Thunderbrook 已提交
2340 2341 2342 2343 2344 2345 2346 2347
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
2348 2349 2350 2351 2352 2353 2354 2355
        scope, trainer = self._prepare_trainer(program=program,
                                               dataset=None,
                                               scope=scope,
                                               thread=1,
                                               debug=debug,
                                               fetch_list=fetch_list,
                                               fetch_info=fetch_info,
                                               print_period=print_period)
T
Thunderbrook 已提交
2356

2357
        trainer._set_infer(False)
T
Thunderbrook 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2379 2380 2381 2382 2383 2384 2385 2386
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2387 2388
                           print_period=100,
                           fetch_handler=None):
2389 2390 2391 2392 2393 2394 2395 2396
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2397

2398 2399 2400 2401
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2402
                if not provided, then default_main_program (not compiled) will be used.
2403
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2404 2405
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2406
            scope(Scope): the scope used to run this program, you can switch it to different scope
2407 2408 2409
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2410
            debug(bool): whether a user wants to run train_from_dataset 
2411
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2412
                during training
2413
            fetch_info(String List): print information for each Tensor, its length should be equal
2414 2415
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2416
            fetch_handler(FetchHandler): a user define class for fetch output.
2417 2418 2419

        Returns:
            None
2420
        
2421
        Examples:
2422
        
2423 2424
            .. code-block:: python

2425
              import paddle
2426

2427 2428 2429 2430 2431 2432
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2433
              dataset.set_use_var([x, y])
2434
              dataset.set_thread(1)
2435 2436
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2437
              dataset.set_filelist(filelist)
2438 2439
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2440
                                     dataset=dataset)
2441 2442

        """
2443 2444 2445
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)