layers.py 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
19
import six
20
import re
21 22 23
import copy
import weakref
import warnings
24
from copy import deepcopy
25 26
import inspect

27
import paddle
C
chenjian 已提交
28
import paddle.profiler as profiler
29

C
chengduo 已提交
30
from . import parallel_helper
X
Xin Pan 已提交
31
from .. import unique_name
32
from paddle.fluid import core
33
from .layer_object_helper import LayerObjectHelper
34
from .layer_hooks import record_program_ops_pre_hook, set_op_customized_attrs_post_hook, LayerOpsRecoder
35
from .base import program_desc_tracing_guard, param_guard, in_declarative_mode, _convert_into_variable
36
from paddle.fluid import framework
37
from ..param_attr import ParamAttr
38
from paddle.fluid.executor import Executor, global_scope
39
from paddle.fluid.framework import _non_static_mode, convert_np_dtype_to_dtype_, in_dygraph_mode
40
from paddle.fluid.framework import _current_expected_place as _get_device
41
from paddle.fluid.core import VarDesc
C
chentianyu03 已提交
42
from paddle.fluid.dygraph import no_grad
W
wanghuancoder 已提交
43
import paddle.utils.deprecated as deprecated
44

45
__all__ = ['Layer']
46

47 48 49 50 51 52 53 54
_first_cap_re = re.compile('(.)([A-Z][a-z]+)')
_all_cap_re = re.compile('([a-z])([A-Z])')


def _convert_camel_to_snake(name):
    s1 = _first_cap_re.sub(r'\1_\2', name)
    return _all_cap_re.sub(r'\1_\2', s1).lower()

55

56 57 58 59 60 61 62 63 64 65 66
def _addindent(string, indent):
    s1 = string.split('\n')
    if len(s1) == 1:
        return string
    s2 = []
    for idx, line in enumerate(s1):
        if idx > 0:
            s2.append(str((indent * ' ') + line))
    return s1[0] + '\n' + '\n'.join(s2)


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    next_hook_id = 0

    def __init__(self, hooks):
        self._hooks_ref = weakref.ref(hooks)
        self._hook_id = HookRemoveHelper.next_hook_id
        HookRemoveHelper.next_hook_id += 1

    def remove(self):
        hooks = self._hooks_ref()
        if hooks is not None and self._hook_id in hooks:
            del hooks[self._hook_id]


J
Jiabin Yang 已提交
83
class Layer(object):
84 85
    """
    Dynamic graph Layer based on OOD, includes the parameters of the layer, the structure of the forward graph and so on.
X
Xin Pan 已提交
86

87
    Parameters:
88 89
        name_scope (str, optional): prefix name used by the layer to name parameters.
            If prefix is "my_layer", parameter name in MyLayer
90 91 92
            can be "my_layer_0.w_n", where "w" is the parameter
            base name and "n" is an unique suffix auto-generated.
            If None, prefix name will be snake cased class name. Default: None.
93
        dtype(str, optional): data type of this parameter.
94 95
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
96
                Default: "float32"
97

98 99
    Returns:
        None
X
Xin Pan 已提交
100
    """
X
Xin Pan 已提交
101

102
    def __init__(self, name_scope=None, dtype="float32"):
103
        self.training = True
104
        if name_scope is None:
105 106
            name_scope = _convert_camel_to_snake(self.__class__.__name__)
        self._full_name = unique_name.generate(name_scope)
107
        self._helper = LayerObjectHelper(self._full_name)
X
Xin Pan 已提交
108
        self._built = False
M
minqiyang 已提交
109
        self._dtype = dtype
J
Jiabin Yang 已提交
110
        self._init_in_dynamic_mode = framework._non_static_mode()
111

X
Xin Pan 已提交
112
        self._parameters = collections.OrderedDict()
113 114 115
        # Buffers the variable (not parameter) created in layer
        self._buffers = collections.OrderedDict()
        self._non_persistable_buffer_names_set = set()
X
Xin Pan 已提交
116
        self._sub_layers = collections.OrderedDict()
L
lujun 已提交
117
        self._loaddict_holder = collections.OrderedDict()
118

119 120 121 122
        # Record generated op_descs in this layer
        self._op_recorder = LayerOpsRecoder(ops=[], hooks=[])
        self._customized_attrs = {}

123 124 125
        self._forward_pre_hooks = collections.OrderedDict()
        self._forward_post_hooks = collections.OrderedDict()

126 127 128 129
        self._casted_by_pure_fp16 = False

        self._state_dict_hooks = collections.OrderedDict()

M
minqiyang 已提交
130
    def train(self):
131 132 133 134 135 136
        """
        Sets this Layer and all its sublayers to training mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                mylayer.train()  # set mylayer._dropout to train mode
                out = mylayer(x)

161
        """
162 163 164
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
165
        if _non_static_mode():
166
            framework._dygraph_tracer().train_mode()
167 168 169
        # Layer-level setting
        self.training = True
        for layer in self.sublayers():
170
            layer.training = True
M
minqiyang 已提交
171 172

    def eval(self):
173 174 175 176 177 178
        """
        Sets this Layer and all its sublayers to evaluation mode.
        This only effects certain modules like `Dropout` and `BatchNorm`.

        Returns:
            None
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

        Example::
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                x = paddle.randn([10, 1], 'float32')
                mylayer = MyLayer()
                mylayer.eval()  # set mylayer._dropout to eval mode
                out = mylayer(x)
                print(out)

202
        """
203 204 205
        # global setting in dygraph
        # NOTE(chenweihang): nn.Layer also can be used in static mode,
        # but _dygraph_tracer() can not be called in static mode
J
Jiabin Yang 已提交
206
        if _non_static_mode():
207
            framework._dygraph_tracer().eval_mode()
208 209 210
        # Layer-level setting
        self.training = False
        for layer in self.sublayers():
211
            layer.training = False
M
minqiyang 已提交
212

L
LielinJiang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def apply(self, fn):
        """
        Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
        as well as self. Typical use includes initializing the parameters of a model.

        Parameters:
            fn (function): a function to be applied to each sublayer

        Returns:
            Layer: self

        Example::
            .. code-block:: python

              import paddle
              import paddle.nn as nn
229

L
LielinJiang 已提交
230 231 232 233 234
              net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

              def init_weights(layer):
                  if type(layer) == nn.Linear:
                      print('before init weight:', layer.weight.numpy())
235
                      new_weight = paddle.full(shape=layer.weight.shape, dtype=layer.weight.dtype, fill_value=0.9)
L
LielinJiang 已提交
236 237 238 239 240 241 242
                      layer.weight.set_value(new_weight)
                      print('after init weight:', layer.weight.numpy())

              net.apply(init_weights)

              print(net.state_dict())
        """
243
        for layer in self.children():
L
LielinJiang 已提交
244 245 246 247 248 249
            layer.apply(fn)

        fn(self)

        return self

X
Xin Pan 已提交
250
    def full_name(self):
251
        """Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
X
Xin Pan 已提交
252

253 254
        Returns:
            str: full name of this layer.
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

        Example::
            .. code-block:: python

                import paddle

                class LinearNet(paddle.nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__(name_scope = "demo_linear_net")
                        self._linear = paddle.nn.Linear(1, 1)

                    def forward(self, x):
                        return self._linear(x)

                linear_net = LinearNet()
                print(linear_net.full_name())   # demo_linear_net_0

X
Xin Pan 已提交
272 273 274
        """
        return self._full_name

275 276 277 278 279
    def register_forward_post_hook(self, hook):
        """Register a forward post-hook for Layer. The hook will be called after `forward` function has been computed.

        It should have the following form, `input` and `output` of the `hook` is `input` and `output` of the `Layer` respectively.
        User can use forward post-hook to change the output of the Layer or perform information statistics tasks on the Layer.
280

281 282 283 284 285 286 287 288 289 290 291
        hook(Layer, input, output) -> None or modified output

        Parameters:
            hook(function): a function registered as a forward post-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

292 293 294 295 296 297
                import paddle
                import numpy as np

                # the forward_post_hook change the output of the layer: output = output * 2
                def forward_post_hook(layer, input, output):
                    # user can use layer, input and output for information statistis tasks
298

299 300
                    # change the output
                    return output * 2
301

302
                linear = paddle.nn.Linear(13, 5)
303

304 305
                # register the hook
                forward_post_hook_handle = linear.register_forward_post_hook(forward_post_hook)
306

307 308
                value1 = np.arange(26).reshape(2, 13).astype("float32")
                in1 = paddle.to_tensor(value1)
309

310
                out0 = linear(in1)
311

312 313 314 315 316 317 318
                # remove the hook
                forward_post_hook_handle.remove()

                out1 = linear(in1)

                # hook change the linear's output to output * 2, so out0 is equal to out1 * 2.
                assert (out0.numpy() == (out1.numpy()) * 2).any()
319 320 321 322 323 324 325
        """
        hook_remove_helper = HookRemoveHelper(self._forward_post_hooks)
        self._forward_post_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

    def register_forward_pre_hook(self, hook):
        """Register a forward pre-hook for Layer. The hook will be called before `forward` function has been computed.
326

327
        It should have the following form, `input` of the `hook` is `input` of the `Layer`,
328
        hook can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if
329 330 331 332 333 334 335 336 337 338 339 340 341 342
        a single value is returned(unless that value is already a tuple).
        User can use forward pre-hook to change the input of the Layer or perform information statistics tasks on the Layer.

        hook(Layer, input) -> None or modified input

        Parameters:
            hook(function): a function registered as a forward pre-hook

        Returns:
            HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()` .

        Examples:
            .. code-block:: python

343 344
                import paddle
                import numpy as np
345

346
                # the forward_pre_hook change the input of the layer: input = input * 2
347 348
                def forward_pre_hook(layer, input):
                    # user can use layer and input for information statistis tasks
349

350 351 352
                    # change the input
                    input_return = (input[0] * 2)
                    return input_return
353

354
                linear = paddle.nn.Linear(13, 5)
355

356 357
                # register the hook
                forward_pre_hook_handle = linear.register_forward_pre_hook(forward_pre_hook)
358

359 360 361
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                in0 = paddle.to_tensor(value0)
                out0 = linear(in0)
362

363 364
                # remove the hook
                forward_pre_hook_handle.remove()
365

366 367 368
                value1 = value0 * 2
                in1 = paddle.to_tensor(value1)
                out1 = linear(in1)
369

370 371
                # hook change the linear's input to input * 2, so out0 is equal to out1.
                assert (out0.numpy() == out1.numpy()).any()
372 373 374 375 376
        """
        hook_remove_helper = HookRemoveHelper(self._forward_pre_hooks)
        self._forward_pre_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

377 378
    def create_parameter(self,
                         shape,
379
                         attr=None,
380
                         dtype=None,
381 382
                         is_bias=False,
                         default_initializer=None):
383
        """Create parameters for this layer.
384

385
        Parameters:
386
            shape(list): Shape of the parameter.
387 388
            attr(ParamAttr, optional): Parameter attribute of weight. Please refer to :ref:`api_paddle_ParamAttr`. Default: None.
            dtype(str, optional): Data type of this parameter.
389
                If set str, it can be "bool",  "float16", "float32", "float64",
390 391
                "int8", "int16", "int32", "int64", "uint8" or "uint16". Default: "float32".
            is_bias(bool, optional): if this is a bias parameter. Default: False.
392
            default_initializer(Initializer, optional): the default initializer for this parameter.
393
                If set None, default initializer will be set to paddle.nn.initializer.Xavier and paddle.nn.initializer.Constant
394
                for non-bias and bias parameter, respectively. Default: None.
395

396
        Returns:
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
            :Tensor, created parameter.

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

418
        """
H
hong 已提交
419 420 421 422
        temp_attr = copy.deepcopy(attr)
        if isinstance(temp_attr, six.string_types) and temp_attr == "":
            temp_attr = None
        return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
423 424
                                             default_initializer)

W
wanghuancoder 已提交
425 426 427 428
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Layer.create_tensor",
        reason="New api in create_tensor, easier to use.")
429
    def create_variable(self, name=None, persistable=None, dtype=None):
W
wanghuancoder 已提交
430 431 432
        """

        Create Tensor for this layer.
433

434
        Parameters:
W
wanghuancoder 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None

            persistable(bool, optional): if set this tensor persistable. Default: False

            dtype(str, optional): data type of this parameter. If set str, it can be "bool", "float16", "float32", "float64","int8", "int16", "int32", "int64", "uint8" or "uint16". If set None, it will be "float32". Default: None

        Returns:
            Tensor, created Tensor.

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
455

W
wanghuancoder 已提交
456
                        self.back_var = self.create_variable(name = "linear_tmp_0", dtype=self._dtype)
457

W
wanghuancoder 已提交
458 459 460
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
461

W
wanghuancoder 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                        return out

        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)

    # TODO: Add more parameter list when we need them
    def create_tensor(self, name=None, persistable=None, dtype=None):
        """

        Create Tensor for this layer.

        Parameters:
            name(str, optional): name of the tensor. Please refer to :ref:`api_guide_Name` . Default: None
            persistable(bool, optional): if set this tensor persistable. Default: False
486
            dtype(str, optional): data type of this parameter.
487 488
                If set str, it can be "bool",  "float16", "float32", "float64",
                "int8", "int16", "int32", "int64", "uint8" or "uint16".
489
                If set None, it will be "float32". Default: None
490

491
        Returns:
W
wanghuancoder 已提交
492
            Tensor, created Tensor.
493 494 495 496 497 498 499 500 501 502 503 504

        Examples:
            .. code-block:: python

                import paddle

                class MyLinear(paddle.nn.Layer):
                    def __init__(self,
                                in_features,
                                out_features):
                        super(MyLinear, self).__init__()
                        self.linear = paddle.nn.Linear( 10, 10)
505

W
wanghuancoder 已提交
506
                        self.back_var = self.create_tensor(name = "linear_tmp_0", dtype=self._dtype)
507

508 509 510
                    def forward(self, input):
                        out = self.linear(input)
                        paddle.assign( out, self.back_var)
511

512 513
                        return out

514 515 516 517 518 519 520 521
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
522 523 524 525
            name=var_name,
            persistable=persistable,
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR)
526

X
polish  
Xin Pan 已提交
527
    def parameters(self, include_sublayers=True):
528
        """Returns a list of all Parameters from current layer and its sub-layers.
X
Xin Pan 已提交
529

530
        Returns:
531 532 533 534 535 536 537 538 539 540
            list of Tensor : a list of Parameters.

        Examples:
            .. code-block:: python

            import paddle

            linear = paddle.nn.Linear(1,1)
            print(linear.parameters())  # print linear_0.w_0 and linear_0.b_0

X
Xin Pan 已提交
541
        """
542 543 544 545 546
        ret = [
            param
            for _, param in self.named_parameters(
                include_sublayers=include_sublayers)
        ]
X
polish  
Xin Pan 已提交
547
        return ret
X
Xin Pan 已提交
548

549 550 551 552 553 554 555 556 557
    def children(self):
        """Returns an iterator over immediate children layers.

        Yields:
            Layer: a child layer

        Examples:
            .. code-block:: python

558
                import paddle
559

560 561 562 563 564
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)

                layer_list = list(model.children())
565

566
                print(layer_list)   # [<paddle.nn.layer.common.Linear object at 0x7f7b8113f830>, <paddle.nn.layer.common.Linear object at 0x7f7b8113f950>]
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

        """
        for _, layer in self.named_children():
            yield layer

    def named_children(self):
        """Returns an iterator over immediate children layers, yielding both
        the name of the layer as well as the layer itself.

        Yields:
            (string, Layer): Tuple containing a name and child layer

        Examples:
            .. code-block:: python

582
                import paddle
583

584 585 586 587 588 589 590
                linear1 = paddle.nn.Linear(10, 3)
                linear2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(linear1, linear2)
                for prefix, layer in model.named_children():
                    print(prefix, layer)
                    # ('0', <paddle.nn.layer.common.Linear object at 0x7fb61ed85830>)
                    # ('1', <paddle.nn.layer.common.Linear object at 0x7fb61ed85950>)
591 592 593 594 595 596 597 598

        """
        memo = set()
        for name, layer in self._sub_layers.items():
            if layer is not None and layer not in memo:
                memo.add(layer)
                yield name, layer

J
Jiabin Yang 已提交
599
    def sublayers(self, include_self=False):
X
Xin Pan 已提交
600 601
        """Returns a list of sub layers.

602
        Parameters:
J
Jiabin Yang 已提交
603
            include_self(bool, optional): Whether return self as sublayers. Default: False
X
Xin Pan 已提交
604

605 606
        Returns:
            list of Layer : a list of sub layers.
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        self._dropout = paddle.nn.Dropout(p=0.5)

                    def forward(self, input):
                        temp = self._linear(input)
                        temp = self._dropout(temp)
                        return temp

                mylayer = MyLayer()
                print(mylayer.sublayers())  # [<paddle.nn.layer.common.Linear object at 0x7f44b58977d0>, <paddle.nn.layer.common.Dropout object at 0x7f44b58978f0>]

X
Xin Pan 已提交
627
        """
628 629
        ret = [
            layer
J
Jiabin Yang 已提交
630
            for _, layer in self.named_sublayers(include_self=include_self)
631
        ]
X
Xin Pan 已提交
632 633
        return ret

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    def named_parameters(self, prefix='', include_sublayers=True):
        """
        Returns an iterator over all parameters in the Layer, yielding tuple of name and parameter.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_sublayers(bool, optional): Whether include the parameters of sublayers.
                If True, also include the named parameters from sublayers. Default: True.

        Yields:
            (string, Parameter): Tuple of name and Parameter

        Examples:
            .. code-block:: python

649
                import paddle
650

651 652 653 654 655
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for name, param in model.named_parameters():
                    print(name, param)
656 657 658 659 660

        """
        params_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
661
            include_self=True) if include_sublayers else zip([prefix], [self])
662 663 664 665 666 667 668 669 670
        for layer_prefix, sublayer in named_sublayers:
            params = sublayer._parameters.items()
            for key, param in params:
                if param is None or param in params_set:
                    continue
                params_set.add(param)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, param

J
Jiabin Yang 已提交
671
    def named_sublayers(self, prefix='', include_self=False, layers_set=None):
672 673 674 675 676 677 678
        """
        Returns an iterator over all sublayers in the Layer, yielding tuple of name and sublayer.
        The duplicate sublayer will only be yielded once.

        Parameters:
            prefix(str, optional): Prefix to prepend to all parameter names. Default: ''.
            include_self(bool, optional): Whether include the Layer itself. Default: False.
679
            layers_set(set, optional): The set to record duplicate sublayers. Default: None.
680 681 682 683 684 685 686

        Yields:
            (string, Layer): Tuple of name and Layer

        Examples:
            .. code-block:: python

687
                import paddle
688

689 690 691 692 693
                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = paddle.nn.Sequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
694 695 696 697 698 699 700

        """
        if layers_set is None:
            layers_set = set()
        if include_self and self not in layers_set:
            layers_set.add(self)
            yield prefix, self
J
Jiabin Yang 已提交
701 702 703 704 705 706 707 708
        for key, layer in self._sub_layers.items():
            if layer is None:
                continue
            layer_prefix = prefix + ('.' if prefix else '') + key
            for p, l in layer.named_sublayers(
                    prefix=layer_prefix, include_self=True,
                    layers_set=layers_set):
                yield p, l
709

710
    def register_buffer(self, name, tensor, persistable=True):
711
        """
712
        Registers a tensor as buffer into the layer.
713

714
        `buffer` is a non-trainable tensor and will not be updated by optimizer,
715 716 717 718 719 720 721 722 723 724
        but is necessary for evaluation and inference. For example, the mean and variance in BatchNorm layers.
        The registered buffer is persistable by default, and will be saved into
        `state_dict` alongside parameters. If set persistable=False, it registers
        a non-persistable buffer, so that it will not be a part of `state_dict` .

        Buffers can be accessed as attributes using given names.

        Parameters:
            name (string): name of the buffer. The buffer can be accessed
                from this layer using the given name
725
            tensor (Tensor): the tensor to be registered as buffer.
726 727 728 729 730
            persistable (bool): whether the buffer is part of this layer's
                state_dict.

        Returns:
            None
731

732 733 734 735
        Examples:
            .. code-block:: python

                import numpy as np
736
                import paddle
737

738 739 740 741 742 743 744
                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                # get the buffer by attribute.
                print(linear.buf_name)
745 746 747 748 749 750 751 752 753 754 755

        """

        if '_buffers' not in self.__dict__:
            raise ValueError(
                "super(YourLayer, self).__init__() should be called first")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of buffer should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
756 757 758 759
            raise KeyError(
                "The name of buffer can not contain `.`, "
                "because when you access the newly added buffer in the "
                "form of `self.**.**`, it will cause AttributeError.")
760 761 762 763
        elif name == '':
            raise KeyError("The name of buffer can not be empty.")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError("attribute '{}' already exists.".format(name))
0
0x45f 已提交
764 765
        elif tensor is not None and not (type(tensor) == core.VarBase or
                                         type(tensor) == core.eager.Tensor):
766
            raise TypeError(
W
wanghuancoder 已提交
767
                "The registered buffer should be a Paddle.Tensor, but received {}.".
768
                format(type(tensor).__name__))
769
        else:
770
            self._buffers[name] = tensor
771 772 773 774 775 776 777 778 779 780 781 782 783
            if persistable:
                self._non_persistable_buffer_names_set.discard(name)
            else:
                self._non_persistable_buffer_names_set.add(name)

    def buffers(self, include_sublayers=True):
        """
        Returns a list of all buffers from current layer and its sub-layers.

        Parameters:
            include_sublayers(bool, optional): Whether include the buffers of sublayers. If True, also include the buffers from sublayers. Default: True

        Returns:
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            list of Tensor : a list of buffers.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle

                linear = paddle.nn.Linear(10, 3)
                value = np.array([0]).astype("float32")
                buffer = paddle.to_tensor(value)
                linear.register_buffer("buf_name", buffer, persistable=True)

                print(linear.buffers())     # == print([linear.buf_name])

799 800 801 802 803 804 805 806 807 808
        """
        ret = [
            buffer
            for _, buffer in self.named_buffers(
                include_sublayers=include_sublayers)
        ]
        return ret

    def named_buffers(self, prefix='', include_sublayers=True):
        """
809
        Returns an iterator over all buffers in the Layer, yielding tuple of name and Tensor.
810 811 812 813 814 815 816

        Parameters:
            prefix(str, optional): Prefix to prepend to all buffer names. Default: ''.
            include_sublayers(bool, optional): Whether include the buffers of sublayers.
                If True, also include the named buffers from sublayers. Default: True.

        Yields:
817
            (string, Tensor): Tuple of name and tensor
818 819 820 821 822

        Examples:
            .. code-block:: python

                import numpy as np
823
                import paddle
824

825 826 827 828
                fc1 = paddle.nn.Linear(10, 3)
                buffer1 = paddle.to_tensor(np.array([0]).astype("float32"))
                # register a tensor as buffer by specific `persistable`
                fc1.register_buffer("buf_name_1", buffer1, persistable=True)
829

830 831 832 833 834
                fc2 = paddle.nn.Linear(3, 10)
                buffer2 = paddle.to_tensor(np.array([1]).astype("float32"))
                # register a buffer by assigning an attribute with Tensor.
                # The `persistable` can only be False by this way.
                fc2.buf_name_2 = buffer2
835

836
                model = paddle.nn.Sequential(fc1, fc2)
837

838 839 840
                # get all named buffers
                for name, buffer in model.named_buffers():
                    print(name, buffer)
841 842 843 844 845

        """
        buffers_set = set()
        named_sublayers = self.named_sublayers(
            prefix=prefix,
J
Jiabin Yang 已提交
846
            include_self=True) if include_sublayers else zip([prefix], [self])
847 848 849 850 851 852 853 854 855
        for layer_prefix, sublayer in named_sublayers:
            buffers = sublayer._buffers.items()
            for key, buffer in buffers:
                if buffer is None or buffer in buffers_set:
                    continue
                buffers_set.add(buffer)
                name = layer_prefix + ('.' if layer_prefix else '') + key
                yield name, buffer

X
Xin Pan 已提交
856
    def clear_gradients(self):
857 858
        """
        Clear the gradients of all parameters for this layer.
859

860 861
        Returns:
            None
862

863 864 865
        Examples:
            .. code-block:: python

866
                import paddle
867 868
                import numpy as np

869 870 871 872 873 874 875 876 877
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
                linear = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01,
                                            parameters=linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                linear.clear_gradients()
878 879

        """
X
Xin Pan 已提交
880
        for p in self.parameters():
881 882
            if p.trainable:
                p.clear_gradient()
X
Xin Pan 已提交
883

884
    def _build_once(self, *args, **kwargs):
885 886
        pass

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    def _dygraph_call_func(self, *inputs, **kwargs):
        for forward_pre_hook in self._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
                    hook_result = (hook_result, )
                inputs = hook_result

        if not self._built:
            with program_desc_tracing_guard(False):
                self._build_once(*inputs, **kwargs)

                # TODO(liuyuhui) Only xpu broadcast parameters here.
                # The other device is to call _sync_params_buffers in DataParallel
                # to realize the parameter synchronization among multiply cards.
                if parallel_helper._is_data_parallel_mode(
                ) and paddle.is_compiled_with_xpu():
                    parallel_helper._broadcast_parameters(
                        self._parameters.values())

            self._built = True

C
chenjian 已提交
909 910 911
        with profiler.RecordEvent(self.full_name(),
                                  profiler.TracerEventType.Forward):
            outputs = self.forward(*inputs, **kwargs)
912 913 914 915 916 917 918 919

        for forward_post_hook in self._forward_post_hooks.values():
            hook_result = forward_post_hook(self, inputs, outputs)
            if hook_result is not None:
                outputs = hook_result

        return outputs

920
    def __call__(self, *inputs, **kwargs):
921 922 923 924 925 926
        if (not in_declarative_mode()) and (not self._forward_pre_hooks) \
            and (not self._forward_post_hooks) and (not self._built) and in_dygraph_mode():
            self._build_once(*inputs, **kwargs)
            return self.forward(*inputs, **kwargs)
        else:
            return self._dygraph_call_func(*inputs, **kwargs)
M
minqiyang 已提交
927

928
    def forward(self, *inputs, **kwargs):
929 930 931 932 933 934 935 936
        """
        Defines the computation performed at every call.
        Should be overridden by all subclasses.

        Parameters:
            *inputs(tuple): unpacked tuple arguments
            **kwargs(dict): unpacked dict arguments
        """
937
        raise NotImplementedError
X
Xin Pan 已提交
938 939 940 941

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
942 943 944
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

945
        Added sublayer can be accessed by self.name
X
Xin Pan 已提交
946

947 948 949
        Parameters:
            name(str): name of this sublayer.
            sublayer(Layer): an instance of Layer.
X
Xin Pan 已提交
950
        Returns:
951
            Layer: the sublayer passed in.
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        Examples:
            .. code-block:: python

                import paddle

                class MySequential(paddle.nn.Layer):
                    def __init__(self, *layers):
                        super(MySequential, self).__init__()
                        if len(layers) > 0 and isinstance(layers[0], tuple):
                            for name, layer in layers:
                                self.add_sublayer(name, layer)
                        else:
                            for idx, layer in enumerate(layers):
                                self.add_sublayer(str(idx), layer)

                    def forward(self, input):
                        for layer in self._sub_layers.values():
                            input = layer(input)
                        return input

                fc1 = paddle.nn.Linear(10, 3)
                fc2 = paddle.nn.Linear(3, 10, bias_attr=False)
                model = MySequential(fc1, fc2)
                for prefix, layer in model.named_sublayers():
                    print(prefix, layer)
X
Xin Pan 已提交
978
        """
J
Jiabin Yang 已提交
979
        assert (isinstance(sublayer, Layer) or sublayer == None)
980

X
Xin Pan 已提交
981 982 983 984 985 986
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

987
        Added parameter can be accessed by self.name
X
Xin Pan 已提交
988

989 990 991
        Parameters:
            name(str): name of this sublayer.
            parameter(Parameter): an instance of Parameter.
X
Xin Pan 已提交
992
        Returns:
993
            Parameter: the parameter passed in.
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        Examples:
            .. code-block:: python

                import paddle

                class MyLayer(paddle.nn.Layer):
                    def __init__(self):
                        super(MyLayer, self).__init__()
                        self._linear = paddle.nn.Linear(1, 1)
                        w_tmp = self.create_parameter([1,1])
                        self.add_parameter("w_tmp", w_tmp)

                    def forward(self, input):
                        return self._linear(input)

                mylayer = MyLayer()
                for name, param in mylayer.named_parameters():
                    print(name, param)      # will print w_tmp,_linear.weight,_linear.bias

X
Xin Pan 已提交
1013
        """
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        if '_parameters' not in self.__dict__:
            raise RuntimeError(
                "super(YourLayer, self).__init__() should be called firstly.")
        elif not isinstance(name, six.string_types):
            raise TypeError(
                "The name of parameter should be a string, but received {}.".
                format(type(name).__name__))
        elif '.' in name:
            raise KeyError(
                "The name of parameter can not contain `.`, "
                "because when you access the newly added parameter in the "
                "form of `self.**.**`, it will cause AttributeError.")
        elif name == '':
            raise KeyError("The name of parameter can not be empty.")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError("The parameter '{}' already exists.".format(name))
        elif parameter is not None and not isinstance(parameter,
                                                      framework.Parameter):
1032
            raise TypeError(
1033 1034 1035 1036 1037
                "The parameter to be added should be a Parameter, but received {}.".
                format(type(parameter).__name__))
        else:
            if parameter is None:
                self._parameters[name] = None
1038

1039 1040 1041
            if len(self._loaddict_holder) > 0:
                assert parameter.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
                    parameter.name)
H
hong 已提交
1042

1043
                parameter.set_value(self._loaddict_holder[parameter.name])
1044

1045
            self._parameters[name] = parameter
X
Xin Pan 已提交
1046 1047
        return parameter

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    def _set_op_attrs(self, attrs):
        """
        Add customized attribute while append_op. In case of quantization, we want to save
        some attributes into op_desc while exporting inference model by @to_static.

        Arguments:
            attrs(dict): customized attributes that will be added into op_descs.

        NOTE: The interface is only exposed to developers.
        """

        def is_already_registered(is_pre_hook):
            layers_hooks = self._forward_pre_hooks if is_pre_hook else self._forward_post_hooks
            candidate_hook = record_program_ops_pre_hook if is_pre_hook else set_op_customized_attrs_post_hook

            already_registed = False
            if layers_hooks:
                last_key = next(reversed(layers_hooks))
                already_registed = (layers_hooks[last_key] == candidate_hook)

            return already_registed

        if not isinstance(attrs, dict):
            raise TypeError("attrs should be type(dict), but received {}".
                            format(type(attrs).__name__))

        # NOTE: Overwrite behavior for same key.
        self._customized_attrs.update(attrs)

        if not is_already_registered(is_pre_hook=True):
            pre_hook_helper = self.register_forward_pre_hook(
                record_program_ops_pre_hook)
            assert len(self._op_recorder.hooks) == 0
            self._op_recorder.hooks = [pre_hook_helper]

        # manually register post_hook to ensure it is inserted into the head.
        if not is_already_registered(is_pre_hook=False):
            post_hook_helper = self.register_forward_post_hook(
                set_op_customized_attrs_post_hook)
            if len(self._forward_post_hooks) > 1:
                self._forward_post_hooks.move_to_end(
                    post_hook_helper._hook_id, last=False)

            assert len(self._op_recorder.hooks) == 1

            # hooks that need to be removed once we finish executing them.
            self._op_recorder.hooks.append(post_hook_helper)

1096 1097 1098 1099 1100 1101
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__.update(state)

X
Xin Pan 已提交
1102
    def __getattr__(self, name):
1103 1104 1105
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in self._parameters:
1106
                if in_declarative_mode():
1107
                    return _convert_into_variable(self._parameters[name])
1108 1109 1110 1111 1112 1113 1114 1115
                return self._parameters[name]
        if '_sub_layers' in self.__dict__:
            _sub_layers = self.__dict__['_sub_layers']
            if name in self._sub_layers:
                return self._sub_layers[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
1116
                if in_declarative_mode():
1117
                    return _convert_into_variable(_buffers[name])
1118 1119
                return _buffers[name]
        return object.__getattribute__(self, name)
X
Xin Pan 已提交
1120 1121

    def __setattr__(self, name, value):
S
songyouwei 已提交
1122 1123 1124 1125 1126
        def _remove_if_exist(*dicts):
            for d in dicts:
                if name in d:
                    del d[name]

1127 1128
        if isinstance(getattr(type(self), name, None), property):
            object.__setattr__(self, name, value)
1129
        params = self.__dict__.get('_parameters', None)
X
Xin Pan 已提交
1130 1131 1132 1133
        if isinstance(value, framework.Parameter):
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
H
hong 已提交
1134
            if len(self._loaddict_holder) > 0:
1135
                assert value.name in self._loaddict_holder, "Parameter not found, Can't not find [ {} ] in state_dict".format(
H
hong 已提交
1136 1137 1138 1139
                    value.name)

                value.set_value(self._loaddict_holder[value.name])

1140
            _remove_if_exist(self.__dict__, self._buffers, self._sub_layers)
1141
            params[name] = value
1142 1143 1144 1145 1146 1147
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(
                    "assignment to parameter '{}' should be of type Parameter or None, but got '{}'"
                    .format(name, type(value).__name__))
            params[name] = None
X
Xin Pan 已提交
1148
        else:
1149
            layers = self.__dict__.get('_sub_layers', None)
J
Jiabin Yang 已提交
1150
            if isinstance(value, Layer):
1151 1152 1153 1154 1155
                if layers is None:
                    raise ValueError(
                        "super(YourLayer, self).__init__() should be called first"
                    )

1156
                _remove_if_exist(self.__dict__, self._parameters, self._buffers)
1157 1158 1159 1160 1161 1162 1163 1164
                layers[name] = value
            elif layers is not None and name in layers:
                if value is not None:
                    raise TypeError(
                        "assignment to sublayer '{}' should be of type Layer or None, but got '{}'"
                        .format(name, type(value).__name__))
                layers[name] = None
            else:
1165
                _buffers = self.__dict__.get('_buffers', None)
W
wanghuancoder 已提交
1166
                if isinstance(value, (core.VarBase, core.eager.Tensor)):
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                    if _buffers is None:
                        raise ValueError(
                            "super(YourLayer, self).__init__() should be called first"
                        )
                    _remove_if_exist(self.__dict__, self._parameters,
                                     self._sub_layers)
                    # Set persistable=False by default. Only `register_buffer` can
                    # add a persistable buffer.
                    if name not in self._buffers:
                        self._non_persistable_buffer_names_set.add(name)
1177 1178
                    if not value.name:
                        value.name = unique_name.generate('_buffers_' + name)
1179 1180
                    _buffers[name] = value
                elif _buffers is not None and name in _buffers:
1181
                    # Note(Aurelius84): In Dy2stat, the value of the Buffer may be modified in
1182 1183 1184 1185
                    # decorated function, such as `self.buffer = new_tensor`. So we update its
                    # value via `assign`.
                    if type(value) == framework.Variable:
                        from paddle import assign
1186 1187 1188 1189
                        # Note(zhhsplendid): the condition below happens in PaddleGan model,
                        # but should all non-Variable _buffers[name] be re-assign? We
                        # should consider it in the future. I current wrote this as
                        # conservative code.
1190 1191 1192 1193 1194 1195 1196
                        if in_declarative_mode() and _buffers[name] is None:
                            raise RuntimeError(
                                'In Dy2stat, self.{0} is a buffer and self.{0} is '
                                'not allowed to be set to Variable when self.{0} is None.'.
                                format(name))
                        elif _buffers[name] is None or type(
                                getattr(self, name)) == core.VarBase:
1197 1198
                            _buffers[name] = assign(value)
                        else:
1199
                            assign(value, getattr(self, name))
1200
                    elif value is not None:
1201 1202 1203
                        raise TypeError(
                            "assignment to buffers '{}' should be of type core.VarBase or None, but got '{}'"
                            .format(name, type(value).__name__))
1204 1205 1206 1207
                    else:
                        # Assigning None will remove the buffer, but if re-assign a new varBase to it,
                        # it will be remarked as a buffer with same `persistable` attribute.
                        _buffers[name] = None
1208 1209
                else:
                    object.__setattr__(self, name, value)
X
Xin Pan 已提交
1210 1211 1212 1213 1214 1215

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
1216 1217 1218
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistable_buffer_names_set.discard(name)
X
Xin Pan 已提交
1219 1220 1221
        else:
            object.__delattr__(self, name)

1222 1223
    def __dir__(self):
        """
W
wanghuancoder 已提交
1224
        Return a list. Get all parameters, buffers(non-parameter tensors), sublayers, method and attr of Layer.
1225 1226

        Examples:
1227 1228 1229
            .. code-block:: python
                import paddle
                import numpy as np
1230

1231 1232 1233 1234 1235
                class Mylayer(paddle.nn.Layer):
                    def __init__(self):
                        super(Mylayer, self).__init__()
                        self.linear1 = paddle.nn.Linear(10, 10)
                        self.linear2 = paddle.nn.Linear(5, 5)
C
cnn 已提交
1236
                        self.conv2d = paddle.nn.Conv2D(3, 2, 3)
1237 1238
                        self.embedding = paddle.nn.Embedding(128, 16)
                        self.h_0 = paddle.to_tensor(np.zeros([10, 10]).astype('float32'))
1239

1240 1241 1242 1243
                mylayer = Mylayer()
                print(dir(mylayer))
                # only parts are shown, because of list have too much content
                # ['__call__', '__class__',  ... , 'conv2d', 'embedding', 'h_0', 'linear1', 'linear2', ... , 'sublayers', 'train']
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

        """
        method = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        sublayers = list(self._sub_layers.keys())
        buffers = list(self._buffers.keys())

        keys = method + attrs + parameters + sublayers + buffers

        return keys

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    def extra_repr(self):
        """
        Extra representation of this layer, you can have custom implementation
        of your own layer.
        """
        return ''

    def __repr__(self):
        extra_lines = []
        extra_repr = self.extra_repr()
        extra_lines = extra_repr.split('\n')
        sublayer_lines = []
        for name, layer in self._sub_layers.items():
            sublayer_str = repr(layer)
            sublayer_str = _addindent(sublayer_str, 2)
            sublayer_lines.append('(' + name + '): ' + sublayer_str)

        final_str = self.__class__.__name__ + '('
        if extra_lines:
            if len(extra_lines) > 1:
                final_str += '\n  ' + '\n  '.join(extra_lines) + '\n'
            elif len(extra_lines) == 1:
                final_str += extra_lines[0]
        if sublayer_lines:
            final_str += '\n  ' + '\n  '.join(sublayer_lines) + '\n'

        final_str += ')'
        return final_str

1285 1286 1287 1288 1289
    def register_state_dict_hook(self, hook):
        hook_remove_helper = HookRemoveHelper(self._state_dict_hooks)
        self._state_dict_hooks[hook_remove_helper._hook_id] = hook
        return hook_remove_helper

1290 1291 1292
    def _obtain_parameters_buffers(self,
                                   destination=None,
                                   include_sublayers=True,
S
ShenLiang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                                   structured_name_prefix=""):
        """
        The difference from state_dict() is that state_dict_hook will not be called, 
        but the original types of parameters and buffers will be maintained.
        """
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if buffer is not None and name not in self._non_persistable_buffer_names_set:
                destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._obtain_parameters_buffers(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + "."))
                    destination = destination_temp
        return destination

    def _state_dict_impl(self,
                         destination=None,
                         include_sublayers=True,
                         structured_name_prefix="",
                         include_non_persistable_buffer=False):
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        """
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
            include_non_persistable_buffer(bool, optional): If true, include non persistable buffers of current layer and its sub-layers, it is used in pure fp16 and jit.save. Default: False
        """

        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[structured_name_prefix + name] = data
        for name, buffer in self._buffers.items():
            if not include_non_persistable_buffer:
                if buffer is not None and name not in self._non_persistable_buffer_names_set:
                    destination[structured_name_prefix + name] = buffer
            else:
                if buffer is not None:
                    destination[structured_name_prefix + name] = buffer

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item._state_dict_impl(
                            destination_temp, include_sublayers,
                            structured_name_prefix + layer_name + ".",
                            include_non_persistable_buffer))
                    destination = destination_temp
        for state_dict_hook in self._state_dict_hooks.values():
            hook_result = state_dict_hook(destination)
            if hook_result is not None:
                destination = hook_result

        return destination

    def to_static_state_dict(self,
                             destination=None,
                             include_sublayers=True,
                             structured_name_prefix=""):
        '''
        Get all parameters and buffers of current layer and its sub-layers. And set them into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        Retruns:
            dict: a dict contains all the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle

                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.to_static_state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")

        '''
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=True)

H
hong 已提交
1393 1394 1395 1396
    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
H
hong 已提交
1397
        '''
1398
        Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
H
hong 已提交
1399

1400
        Parameters:
1401 1402
            destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
1403

H
hong 已提交
1404
        Retruns:
1405
            dict: a dict contains all the parameters and persistable buffers.
H
hong 已提交
1406 1407

        Examples:
1408 1409
            .. code-block:: python

1410
                import paddle
H
hong 已提交
1411

1412 1413 1414 1415
                emb = paddle.nn.Embedding(10, 10)

                state_dict = emb.state_dict()
                paddle.save( state_dict, "paddle_dy.pdparams")
H
hong 已提交
1416 1417

        '''
1418 1419 1420 1421 1422
        return self._state_dict_impl(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix,
            include_non_persistable_buffer=False)
1423

1424
    @framework.deprecate_stat_dict
J
Jiabin Yang 已提交
1425
    def set_state_dict(self, state_dict, use_structured_name=True):
H
hong 已提交
1426
        '''
1427
        Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
H
hong 已提交
1428

1429
        Parameters:
1430
            state_dict(dict) : Dict contains all the parameters and persistable buffers.
1431
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
H
hong 已提交
1432
                                                  Default: True
H
hong 已提交
1433 1434 1435 1436
        Returns:
            None

        Examples:
1437 1438
            .. code-block:: python

1439
                import paddle
1440

1441
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
1442

1443
                state_dict = emb.state_dict()
1444 1445
                paddle.save(state_dict, "paddle_dy.pdparams")
                para_state_dict = paddle.load("paddle_dy.pdparams")
1446
                emb.set_state_dict(para_state_dict)
H
hong 已提交
1447

H
hong 已提交
1448 1449
        '''

1450 1451 1452 1453 1454
        def _check_match(key, param):
            state = state_dict.get(key, None)
            if state is None:
                raise ValueError("{} is not found in the provided dict.".format(
                    key))
S
Steffy-zxf 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            if (isinstance(state, dict) or isinstance(state, list)):
                if (len(state) != len(param)):
                    raise ValueError("{} receieves the length of {}, "
                                     "but the expected shape is {}".format(
                                         key, len(state), len(param)))
                else:
                    return param, state
            else:
                state_shape = state.shape() if inspect.ismethod(
                    state.shape) else state.shape

                if list(state_shape) != list(param.shape):
                    raise ValueError(
                        "{} receives a shape {}, but the expected shape is {}.".
                        format(key, list(state_shape), list(param.shape)))
                return param, state
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

        matched_param_state = []
        for key, param in self.state_dict().items():
            key_name = key if use_structured_name else param.name
            try:
                match_res = _check_match(key_name, param)
                matched_param_state.append(match_res)
            except ValueError as err:
                warnings.warn(("Skip loading for {}. ".format(key) + str(err)))

J
Jiabin Yang 已提交
1481
        if _non_static_mode():
1482 1483 1484
            for param, state in matched_param_state:
                param.set_value(state)
        else:
H
hong 已提交
1485

1486 1487 1488 1489 1490 1491 1492
            def _set_var(var, ndarray):
                t = global_scope().find_var(var.name).get_tensor()
                p = t._place()
                if p.is_cpu_place():
                    place = core.CPUPlace()
                elif p.is_cuda_pinned_place():
                    place = core.CUDAPinnedPlace()
1493 1494 1495 1496
                elif p.is_xpu_place():
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.XPUPlace(p.xpu_device_id())
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                else:
                    p = core.Place()
                    p.set_place(t._place())
                    place = core.CUDAPlace(p.gpu_device_id())
                t.set(ndarray, place)

            executor = Executor(_get_device())._default_executor
            # restore parameter states
            core._create_loaded_parameter(
                [param for param, state in matched_param_state],
                global_scope(), executor)
            for param, state in matched_param_state:
                _set_var(param, state)

C
chentianyu03 已提交
1511 1512 1513 1514 1515
    def to(self, device=None, dtype=None, blocking=None):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
1516 1517 1518 1519
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

1520
            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.
C
chentianyu03 已提交
1521

1522
            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
C
chentianyu03 已提交
1523
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
1524
            
C
chentianyu03 已提交
1525
        Returns:
1526
            self
C
chentianyu03 已提交
1527 1528 1529 1530

        Examples:
            .. code-block:: python

1531
                # required: skip
C
chentianyu03 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
                import paddle

                linear=paddle.nn.Linear(2, 2)
                linear.weight
                #Parameter containing:
                #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(dtype='float64')
                linear.weight
                #Tenor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])

                linear.to(device='cpu')
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CPUPlace, stop_gradient=False,
                #       [[-0.32770029,  0.38653070],
                #        [ 0.46030545,  0.08158520]])
                linear.to(device=paddle.CUDAPinnedPlace(), blocking=False)
                linear.weight
                #Tensor(shape=[2, 2], dtype=float64, place=CUDAPinnedPlace, stop_gradient=False,
                #       [[-0.04989364, -0.56889004],
                #        [ 0.33960250,  0.96878713]])
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        '''
        return self._to_impl(
            device=device,
            dtype=dtype,
            blocking=blocking,
            include_sublayers=True)

    def _apply(self, func, device, dtype, blocking, include_sublayers=True):
        if include_sublayers:
            for layer in self.children():
                layer._apply(func, device, dtype, blocking, include_sublayers)

        for key, param in self._parameters.items():
            if param is not None:
                with no_grad():
                    param_applied = func(param, device, dtype, blocking)

                if param.grad is not None:
                    with no_grad():
                        grad_applied = func(param._grad_ivar(), device, dtype,
                                            blocking)

        for key, buf in self._buffers.items():
            self._buffers[key] = func(buf, device, dtype, blocking)

1583 1584
        self._dtype = dtype

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    def _to_impl(self,
                 device=None,
                 dtype=None,
                 blocking=None,
                 include_sublayers=True):
        '''
        Cast the parameters and buffers of Layer by the give device, dtype and blocking.

        Parameters:
            device(str|paddle.CPUPlace()|paddle.CUDAPlace()|paddle.CUDAPinnedPlace()|paddle.XPUPlace()|None, optional): The device of the Layer which want to be stored.
            If None, the device is the same with the original Tensor. If device is string, it can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None.

            dtype(str|numpy.dtype|paddle.dtype|None, optional): The type of the data. If None, the dtype is the same with the original Tensor. Default: None.

            blocking(bool|None, optional): If False and the source is in pinned memory, the copy will be
              asynchronous with respect to the host. Otherwise, the argument has no effect. If None, the blocking is set True. Default: None.
            
            include_sublayers(bool|True, optional): If True, deal with self and all sublayers parameters and buffers, if not only deal with self parameters and buffers. Default: True.

        Returns:
            self
C
chentianyu03 已提交
1607 1608 1609 1610

        '''

        if device is None and dtype is None and blocking is None:
1611
            return self
C
chentianyu03 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype

1637
            if type(dtype) is not VarDesc.VarType:
1638 1639
                dtype = convert_np_dtype_to_dtype_(dtype)

1640 1641 1642
            # 1. gpu place need to determine whether the memory is sufficient for allocation:
            if t.place.is_gpu_place():
                # for gpu, minimum memory allocation unit is 256 bytes.
1643
                size_dtype = core.size_of_dtype(dtype)
1644 1645 1646
                # Note(zhangbo): Paddle GPU minimum memory allocation unit is 256 bytes, waiting_alloc_memory will comput ‘t’ occupied memory space.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
1647 1648
                    (np.prod(t.shape) * size_dtype) / 256 + 1) * 256 * 1.2
                gpu_memory_available = core.gpu_memory_available()
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy param / Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(),
                                        blocking)  # k-v type will error
                    # Release mem of t
                    t.value().get_tensor()._clear()
                else:
                    t_used = t
            else:
                t_used = t

            # 2. cast param / Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
1662 1663
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
1664
                    t_casted = t_used.cast(dtype=dtype)
1665
            else:
1666 1667 1668
                t_casted = t_used

            # 3. Copy casted cpu param / Tensor to device
1669 1670 1671 1672
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
1673 1674 1675 1676 1677

            # 4. share Tensor to origin param / Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)
C
chentianyu03 已提交
1678

1679
            return t
C
chentianyu03 已提交
1680

1681 1682
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
1683
            self._apply(transform, device, dtype, blocking, include_sublayers)
1684

1685
        self._dtype = dtype
1686
        return self
C
chentianyu03 已提交
1687

1688 1689 1690
    # [aliases] Compatible with old method names
    set_dict = set_state_dict
    load_dict = set_state_dict