op_test.py 98.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import sys
19
import unittest
20
import warnings
21
import numpy as np
22
import random
M
minqiyang 已提交
23
import six
24
import struct
25
import time
26
import itertools
Y
Yu Yang 已提交
27
import collections
M
minqiyang 已提交
28
from collections import defaultdict
29
from copy import copy
30

31
import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid.framework import _dygraph_tracer
34
import paddle.fluid.core as core
J
Jiabin Yang 已提交
35
from paddle.fluid.framework import _in_legacy_dygraph, _enable_legacy_dygraph, _in_eager_without_dygraph_check, _disable_legacy_dygraph
36
from paddle.fluid.framework import _test_eager_guard
37 38 39
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
40
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
41 42 43 44 45
from paddle.fluid import unique_name
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs

sys.path.append(os.path.abspath(os.path.dirname(__file__)))
from testsuite import (
46 47 48 49
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
50
from white_list import (
51 52 53 54 55 56
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
57

58 59 60 61 62
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
g_enable_legacy_dygraph = _enable_legacy_dygraph if g_is_in_eager else lambda: None
g_disable_legacy_dygraph = _disable_legacy_dygraph if g_is_in_eager else lambda: None

63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


106 107 108 109 110 111 112 113
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


114 115 116 117
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
118
    for i in six.moves.xrange(len(prob)):
119 120 121 122
        prob[i] /= prob_sum[i]
    return prob


123 124
def get_numeric_gradient(place,
                         scope,
125 126 127
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
128
                         output_names,
129
                         delta=0.005,
C
chengduo 已提交
130
                         in_place=False):
Y
Yu Yang 已提交
131
    # FIXME: change this method by compile time concepts
132
    set_input(scope, op, inputs, place)
133 134

    def product(dim):
M
minqiyang 已提交
135
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
136 137

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
138 139
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
140
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
141
        tensor_to_check_dtype = np.float32
142
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
143
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
144 145 146 147
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
148 149
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
150 151 152 153
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
154
    else:
155 156
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
157

C
chengduo 已提交
158 159 160 161
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
162
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
163 164 165
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
166 167 168
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
169 170
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

171 172 173
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
174 175 176 177
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
178 179 180
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
181 182 183 184
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
185
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
186
            return tensor._get_float_element(i)
187
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
188
            return tensor._get_double_element(i)
189 190 191
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
192 193

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
194 195 196 197 198
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
199
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
200
            tensor.set(numpy_tensor, place)
201 202 203 204 205 206 207
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
208
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
209
            tensor._set_float_element(i, e)
210
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
211
            tensor._set_double_element(i, e)
212 213 214
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
215

216 217
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
218
    for i in six.moves.xrange(tensor_size):
219
        if in_place:
220
            set_input(scope, op, inputs, place)
221 222

        # get one input element throw it's index i.
223
        origin = __get_elem__(tensor_to_check, i)
224 225
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
226
        __set_elem__(tensor_to_check, i, x_pos)
227 228 229
        y_pos = get_output()

        if in_place:
230
            set_input(scope, op, inputs, place)
231 232

        x_neg = origin - delta
233
        __set_elem__(tensor_to_check, i, x_neg)
234 235
        y_neg = get_output()

236
        __set_elem__(tensor_to_check, i, origin)
237 238
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
239
    return gradient_flat.reshape(tensor_to_check.shape())
240 241


242 243
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
244

245
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
246
       cases that do not need to do check_grad. This decorator is used to skip the
247
       check_grad of the above cases.
C
cc 已提交
248 249

       Note: the execution of unit test will not be skipped. It just avoids check_grad
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


266 267 268 269 270 271 272 273 274 275 276 277
def skip_check_inplace_ci(reason=None):
    if not isinstance(reason, str):
        raise AssertionError(
            "The reason for skipping check_inplace is required.")

    def wrapper(cls):
        cls.no_need_check_inplace = True
        return cls

    return wrapper


278 279 280 281
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


282 283 284 285
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

286 287 288
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
289
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
290

291 292 293
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
294 295


296 297 298
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
299
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
300 301
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
302 303


304
class OpTest(unittest.TestCase):
305 306 307 308 309
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
310
        cls.call_once = False
311
        cls.dtype = None
312
        cls.outputs = {}
313
        cls.input_shape_is_large = True
314 315 316 317

        np.random.seed(123)
        random.seed(124)

318 319 320 321
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
322

323 324
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
325
        """Restore random seeds"""
326 327 328
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

329 330
        _set_use_system_allocator(cls._use_system_allocator)

331 332 333 334
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
335
                if is_mkldnn_op_test():
336 337 338 339 340 341 342 343
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

344 345 346
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
347
        def is_mkldnn_op_test():
348
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
349

350 351 352
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

353 354 355
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

356 357 358
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

359 360 361 362
        def is_custom_device_op_test():
            return hasattr(
                cls, "use_custom_device") and cls.use_custom_device == True

363 364
        if not hasattr(cls, "op_type"):
            raise AssertionError(
365 366
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
367

J
juncaipeng 已提交
368 369
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
370
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
371
            if cls.dtype is None or \
372 373
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
374 375 376 377
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

378
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
379 380
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
381
                and not hasattr(cls, 'exist_fp64_check_grad') \
382
                and not is_xpu_op_test() \
383
                and not is_mkldnn_op_test() \
384
                and not is_rocm_op_test() \
385
                and not is_npu_op_test() \
386 387
                and not is_mlu_op_test() \
                and not is_custom_device_op_test():
J
juncaipeng 已提交
388 389 390 391
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

392
            if not cls.input_shape_is_large \
393 394 395 396
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
397

398 399 400 401 402
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

403
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
404 405
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
406
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
407 408 409
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
410
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
424

425
    # set the self.output_dtype .
426
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
427 428 429 430
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
431 432 433
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
456 457
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
458 459
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
460 461 462
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
463 464 465
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
466
            if dtype in input_dtype_set:
J
juncaipeng 已提交
467 468
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
469
        # save input dtype in class attr
470
        self.__class__.dtype = self.dtype
471

Y
Yiqun Liu 已提交
472 473 474 475 476 477 478 479
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
480 481 482 483 484 485
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
486
                    if isinstance(np_value, tuple):
487
                        tensor.set(np_value[0], place)
488
                        tensor.set_recursive_sequence_lengths(np_value[1])
489
                    else:
490
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
491 492 493 494
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
495
                    tensor.set(self.inputs[var_name][0], place)
496 497
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
498
                else:
499
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
500 501 502
                feed_map[var_name] = tensor
        return feed_map

503
    def _append_ops(self, block):
J
juncaipeng 已提交
504
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
505
        if self.is_mkldnn_op():
506
            self.__class__.use_mkldnn = True
C
cc 已提交
507

Y
Yiqun Liu 已提交
508
        if self.is_xpu_op():
509 510
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
511
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
512
        "infer datatype from inputs and outputs for this test case"
513 514 515 516 517 518
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
519 520 521 522
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
523 524 525 526 527 528 529 530 531

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
532 533 534 535
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
536
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
537
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
538 539
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
540

541 542
        return op

543 544
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
545
        for name, value in six.iteritems(numpy_inputs):
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
565 566 567 568
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
569
            v = fluid.dygraph.base.to_variable(value=data)
570
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
571 572
            return v
        else:
L
lujun 已提交
573
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

629 630 631 632 633 634 635 636 637 638 639 640 641
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
642

643 644
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
J
Jiabin Yang 已提交
645
                    if not _in_legacy_dygraph():
646 647
                        v.retain_grads()

648
                if has_lod:
649
                    v.value().get_tensor().set_recursive_sequence_lengths(
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

726 727 728 729
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

730
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
731 732
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
Z
zyfncg 已提交
733 734
                
                NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
735
            """
736 737 738 739 740 741 742

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

743 744 745 746 747
            def get_default(idx, defaults):
                assert not isinstance(
                    defaults[idx], Empty
                ), "%d-th params of python api don't have default value." % idx
                return defaults[idx]
748 749 750 751

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

752 753 754 755 756 757 758 759 760
            def parse_attri_value(name, op_inputs, op_attrs):
                """ parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                    1. if the name in op_attrs, use the op_attrs[name]
                    2. if the name in op_inputs, convert the op_inputs to [type of default value]
                    3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
X
xiongkun 已提交
761 762 763 764 765 766 767 768
                    if len(op_inputs[name]) == 1:
                        # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
                        # why we reconstruct a tensor: because we want the tensor in cpu. 
                        return paddle.to_tensor(
                            op_inputs[name][0].numpy(), place='cpu')
                    else:
                        # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                        return op_inputs[name]
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
                else:
                    return Empty()

            # NOTE(xiongkun): the logic of constructing parameters: 
            # for example:  
            #    python api: cumprod(x, dim, dtype=None, name=None) 
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
            # then ,we will loop for the api_params, construct a result list: 
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
787
            api_defaults = to_defaults_list(api_params, api_defaults)
788 789 790 791 792
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
                api_params), "Error happens. contack xiongkun03 to solve."
793
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
794
            inputs_and_attrs = inputs_sig + attrs_sig
Z
zyfncg 已提交
795 796 797
            input_arguments = [
                op_proto_ins.get(name, Empty()) for name in inputs_sig
            ] + [
798
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
799 800 801
                for name in attrs_sig
            ]
            results = []
802 803 804 805 806
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
807
                else:
808 809 810 811 812 813
                    if (idx_of_op_proto_arguments < len(input_arguments)):
                        tmp = input_arguments[idx_of_op_proto_arguments]
                        idx_of_op_proto_arguments += 1
                    else:
                        tmp = Empty()  # use the default value

814 815 816 817 818
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
819
            return results
820 821

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
822 823
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
824 825
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
826 827 828 829 830 831 832
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
X
xiongkun 已提交
833
                ) == 1, "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
834
                return {output_sig[0]: ret_tuple}
835

836
        def assumption_assert_and_transform(args, inp_num):
837
            """
838
            transform inputs by the following rules:
839 840
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors
Z
zyfncg 已提交
841 842
                3. None -> None
                4. Others: raise Error
843 844

            only support "X" is list of Tensor, currently don't support other structure like dict.
845
            """
Z
zyfncg 已提交
846 847 848
            inp_args = [[inp] if inp is None else inp
                        for inp in args[:inp_num]]  # convert None -> [None]
            for inp in inp_args:
849 850 851
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
Z
zyfncg 已提交
852 853
            args = [inp[0] if len(inp) == 1 else inp
                    for inp in inp_args] + args[inp_num:]
854
            return args
855

856 857 858 859 860 861 862 863 864 865
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
X
xiongkun 已提交
866 867 868
                print(
                    "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
                    % self.op_type)
869 870
            return kernel_sig

871
        def cal_python_api(python_api, args, kernel_sig):
872
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
873 874
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
875 876 877 878 879 880
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
881
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
882
                op_proto, self.inputs, True, False, block)
883
            # prepare output variable
884
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
885 886
                op_proto, self.outputs, False, False, block)

887
            # prepare attributes
888 889 890 891 892 893
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

894 895 896 897
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs)
            if not kernel_sig:
                return None
898 899
            assert hasattr(
                self, "python_api"
900
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
901 902
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig)
903 904
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
905
            return cal_python_api(self.python_api, args, kernel_sig)
906

L
lujun 已提交
907
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
908
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
909
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
910 911
            block = fluid.default_main_program().global_block()

912
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
913

914 915 916
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
917
            # prepare output variable
918 919 920
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

921
            # prepare attributes
922 923 924 925 926
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
927

M
minqiyang 已提交
928 929 930 931
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
932
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
933
            return outputs
934

935 936 937 938 939 940
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
941
                     for_inplace_test=None):
942 943
        program = Program()
        block = program.global_block()
944
        op = self._append_ops(block)
945 946 947 948 949

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

950
        if for_inplace_test:
C
cc 已提交
951 952
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
953 954
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
955 956
            for out_name in op.output_arg_names:
                var = block.var(out_name)
957 958
                if 0 in var.shape:
                    var.persistable = True
959
        original_program = program
960 961
        if parallel:
            use_cuda = False
962
            if isinstance(place, fluid.CUDAPlace):
963
                use_cuda = True
964 965 966
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
967 968 969 970
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
971
            for var_name, var in six.iteritems(outputs):
972 973
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
974 975
                if isinstance(var, list):
                    for v in var:
976
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
977
                else:
978
                    fetch_list.append(var.name)
979 980 981 982
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
983 984 985 986 987 988 989 990 991

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

992
        executor = Executor(place)
993 994 995 996
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
997 998
        self.op = op
        self.program = original_program
999 1000 1001 1002
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
1013
            place (CPUPlace | CUDAPlace): The place where the op runs.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1024
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1025 1026 1027
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1028 1029
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1030 1031 1032
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
1033
                        expect_out, actual_out, atol=inplace_atol),
1034 1035
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1036 1037
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
1038 1039
            else:
                self.assertTrue(
1040
                    np.array_equal(expect_out, actual_out),
1041 1042
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1043 1044
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
1045 1046 1047 1048 1049 1050 1051 1052

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1053
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
1080 1081
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1097
            place (CPUPlace | CUDAPlace): The place where the op runs.
1098 1099 1100
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1101
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1133

1134
        Args:
C
cc 已提交
1135 1136
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1137
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1153
                # get grad_op_desc
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1177
        """Check the inplace correctness of given op (self.op_type).
1178
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1179

1180
        Args:
C
cc 已提交
1181
            place (CPUPlace | CUDAPlace): The place where the op runs.
1182 1183 1184 1185
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1186 1187
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1188 1189
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1200
        # compare expect_outs and actual_outs
1201 1202 1203 1204 1205 1206
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1220
            place (CPUPlace | CUDAPlace): The place where the op runs.
1221 1222 1223 1224 1225 1226 1227 1228 1229
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1230
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1231
                                                                  set(), [])
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1257
        """Check the inplace correctness of given grad_op_desc.
1258 1259 1260 1261 1262 1263

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1264
            place (CPUPlace | CUDAPlace): The place where the op runs.
1265 1266 1267 1268 1269 1270
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1271 1272
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1296
            place (CPUPlace | CUDAPlace): The place where the op runs.
1297 1298 1299 1300 1301 1302
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
1303 1304 1305
        if getattr(self, "no_need_check_inplace", False):
            return

1306 1307 1308 1309 1310 1311 1312 1313 1314
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1315 1316
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1330 1331
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1332
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1345
                else:
1346 1347
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1348

1349 1350
    def check_output_with_place(self,
                                place,
1351
                                atol=0,
1352
                                no_check_set=None,
M
minqiyang 已提交
1353
                                equal_nan=False,
1354
                                check_dygraph=True,
1355 1356
                                inplace_atol=None,
                                check_eager=False):
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(False, "Found failed {} {}".format(
                dygraph_outs.keys(), target_name))

        def find_actual(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name))
            return found[0]

        class Checker(object):
            """ base class for check with self.outputs.
                currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """ expect_dict is the self.outputs
                    support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1391 1392 1393
            def init(self):
                pass

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                pass

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """ return: (actual_tensor(var_base), actual_numpy)
                """
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                        equal_nan=equal_nan),
                    "Output (" + name + ") has diff at " + str(place) + " in " +
1425
                    self.checker_name)
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
                expect_np = expect[0] \
                    if isinstance(expect, tuple) else expect
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np)
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1441
                    self.op_test.assertTrue(actual_np.size == 0)  # }}}
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name): continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError("sub_out type %s is not list",
                                                 type(sub_out))
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
                            self.compare_single_output_with_expect(sub_out_name,
                                                                   expect)
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1469
                self.init()
1470 1471 1472 1473
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1474 1475 1476
            def init(self):
                self.checker_name = "static checker"

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
                    place, no_check_set=no_check_set)
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
                if expect_np.dtype == np.uint16 and actual_np.dtype == np.uint16:
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(), expect[1],
                    "Output (" + name + ") has different lod at " + str(place))

        class DygraphChecker(Checker):
1516 1517 1518
            def init(self):
                self.checker_name = "dygraph checker"

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
                    place, no_check_set=no_check_set)

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place)
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1532 1533 1534 1535 1536 1537
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
1538 1539 1540 1541
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1542
                        expect_np = convert_uint16_to_float(expect_np)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
                        actual.value().get_tensor()
                        .recursive_sequence_lengths(), expect[1],
                        "Output (" + name + ") has different lod at " +
                        str(place) + " in dygraph mode")

            def _compare_numpy(self, name, actual_np, expect_np):
                if six.moves.reduce(lambda x, y: x * y, actual_np.shape,
                                    1) == 0 and six.moves.reduce(
                                        lambda x, y: x * y, expect_np.shape,
                                        1) == 0:
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                            equal_nan=equal_nan),
                        "Output (" + name + ") has diff at " + str(place) +
1570
                        " in " + self.checker_name)
1571 1572

        class EagerChecker(DygraphChecker):
1573 1574 1575
            def init(self):
                self.checker_name = "eager checker"

1576 1577 1578
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1579
                    self.is_python_api_test = True
1580 1581 1582
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
                        place)
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1583
                        self.is_python_api_test = False
1584
                        # missing KernelSignature, fall back to eager middle output.
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
                            place, no_check_set=no_check_set)
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
                    return super().convert_uint16_to_float_ifneed(actual_np,
                                                                  expect_np)

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1608 1609 1610 1611 1612 1613 1614
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if self.is_python_api_test and hasattr(
                        self.op_test, "python_out_sig"
                ) and name not in self.op_test.python_out_sig:
                    return True
                return super()._is_skip_name(name)
1615

X
xiongkun 已提交
1616 1617
        # set some flags by the combination of arguments. 
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1618 1619 1620 1621
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1622
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1623 1624
            if self.is_mkldnn_op():
                check_dygraph = False
1625
                check_eager = False
Y
Yiqun Liu 已提交
1626 1627 1628 1629 1630
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1631
            else:
1632
                atol = 1e-1
1633

1634 1635 1636
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
X
xiongkun 已提交
1637
                    "no_check_set of op %s must be set to None." % self.op_type)
1638 1639 1640
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1641
        if check_dygraph:
1642 1643 1644
            # always enable legacy dygraph
            g_enable_legacy_dygraph()

1645 1646 1647
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1648 1649
            # yield the original state
            g_disable_legacy_dygraph()
1650
        if check_eager:
1651 1652 1653
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1654

C
cc 已提交
1655
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1656 1657
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1658
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1659 1660 1661
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1662 1663
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1664 1665
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1666
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1667
        # No effect on original OpTest
1668
        # Currently not support ParallelExecutor on XPUPlace.
1669
        if not paddle.is_compiled_with_xpu(
1670 1671
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1672 1673
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1674

1675 1676 1677
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1725
    def _get_places(self):
D
dzhwinter 已提交
1726 1727 1728 1729 1730 1731
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1732 1733
                else:
                    return []
D
dzhwinter 已提交
1734 1735
            else:
                return []
1736
        places = [fluid.CPUPlace()]
1737 1738 1739
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1740
            places.append(core.CUDAPlace(0))
1741 1742
        return places

M
minqiyang 已提交
1743 1744 1745 1746
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1747
                     check_dygraph=True,
1748 1749
                     inplace_atol=None,
                     check_eager=False):
1750
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1751
        if self.is_mkldnn_op():
1752
            self.__class__.use_mkldnn = True
C
cc 已提交
1753

Y
Yiqun Liu 已提交
1754
        if self.is_xpu_op():
1755 1756
            self.__class__.use_xpu = True

1757
        places = self._get_places()
Q
qijun 已提交
1758
        for place in places:
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1771 1772 1773
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1774
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1775
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1776

P
pangyoki 已提交
1777
    def check_output_customized(self, checker, custom_place=None):
1778
        places = self._get_places()
P
pangyoki 已提交
1779 1780
        if custom_place:
            places.append(custom_place)
1781 1782 1783
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1784
            outs.sort(key=len)
1785 1786
            checker(outs)

1787 1788 1789 1790 1791 1792
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1793 1794
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1795
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1796 1797 1798 1799 1800 1801
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1802
            abs_a = np.abs(a)
1803 1804 1805 1806 1807
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1808 1809
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1810 1811
            else:
                abs_a[abs_a < 1e-3] = 1
1812 1813 1814 1815 1816 1817

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1818 1819 1820
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1821
                    offset, a.flatten()[offset], b.flatten()[offset])
1822 1823 1824

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1825 1826 1827 1828 1829 1830 1831
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1832 1833
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1834
                   output_names,
1835
                   no_grad_set=None,
1836
                   numeric_grad_delta=0.005,
1837
                   in_place=False,
Q
Qiao Longfei 已提交
1838
                   max_relative_error=0.005,
1839
                   user_defined_grads=None,
1840
                   user_defined_grad_outputs=None,
1841 1842
                   check_dygraph=True,
                   check_eager=False):
1843
        self._check_grad_helper()
1844
        places = self._get_places()
1845
        for place in places:
1846
            self.check_grad_with_place(
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1858 1859 1860 1861 1862 1863 1864 1865 1866

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1867
                              user_defined_grads=None,
1868
                              user_defined_grad_outputs=None,
1869
                              check_dygraph=True,
1870 1871
                              numeric_place=None,
                              check_eager=False):
1872
        self.scope = core.Scope()
Q
qijun 已提交
1873
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1874
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1875
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1876

Y
Yiqun Liu 已提交
1877 1878
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1879
            check_dygraph = False
1880
            check_eager = False
1881

1882 1883 1884 1885
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1886

P
phlrain 已提交
1887 1888 1889
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1890 1891 1892 1893 1894 1895 1896

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1897 1898 1899 1900 1901 1902 1903
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1904

1905 1906 1907
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1908 1909
        if no_grad_set is None:
            no_grad_set = set()
1910 1911
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1912 1913 1914
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1915 1916
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1917

1918 1919 1920 1921 1922 1923 1924 1925
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1926 1927 1928
        if not type(output_names) is list:
            output_names = [output_names]

1929 1930 1931
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1932
        numeric_grads = user_defined_grads or [
1933
            get_numeric_gradient(
1934
                numeric_place,
1935 1936 1937 1938
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1939
                output_names,
1940
                delta=numeric_grad_delta,
C
chengduo 已提交
1941
                in_place=in_place) for input_to_check in inputs_to_check
1942
        ]
1943
        analytic_grads = self._get_gradient(inputs_to_check, place,
1944 1945
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1946 1947
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1948
        fp32_analytic_grads = []
1949 1950 1951
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1952
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1953 1954 1955 1956 1957 1958 1959
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1960
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1961 1962
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1963

D
Dun 已提交
1964 1965 1966
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1967

1968
        if check_dygraph:
1969 1970 1971
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

1972 1973
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
1974
                no_grad_set, False)
1975 1976 1977 1978
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1979
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1980 1981
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1982 1983 1984
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))
1985 1986
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
1987

1988
        if check_eager:
J
Jiabin Yang 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
                        inputs_to_check, place, output_names,
                        user_defined_grad_outputs, no_grad_set, check_eager)
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
                            max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
                    self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                          inputs_to_check, max_relative_error,
                                          "Gradient Check On %s" % str(place))
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
2018
                          user_defined_grad_outputs=None,
2019 2020
                          no_grad_set=None,
                          check_eager=False):
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

2034
            # prepare attributes
2035 2036 2037 2038 2039
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2040

2041
            if check_eager:
X
xiongkun 已提交
2042 2043
                eager_outputs = self._calc_python_api_output(place, inputs,
                                                             outputs)
2044
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2045
            if not check_eager or eager_outputs is None:
2046 2047 2048 2049 2050
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
X
xiongkun 已提交
2051 2052
            else:
                outputs = eager_outputs
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

2069 2070 2071 2072 2073
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
2108
                    block.append_op(
2109 2110 2111
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
2112
                        attrs=None)
2113
                    loss = block.create_var(
2114 2115 2116
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2117 2118
                        stop_gradient=False,
                        shape=[1])
2119
                    block.append_op(
2120 2121 2122 2123 2124
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
2125

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
H
hong 已提交
2138
                # delete the inputs which no need to calculate grad                
C
chentianyu03 已提交
2139 2140 2141
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

J
Jiabin Yang 已提交
2142
                if not _in_legacy_dygraph():
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2157

Y
Yu Yang 已提交
2158 2159 2160 2161 2162
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2163
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2164 2165
        return tensor

K
Kexin Zhao 已提交
2166
    @staticmethod
K
Kexin Zhao 已提交
2167 2168
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2169

D
dzhwinter 已提交
2170 2171 2172 2173 2174 2175 2176 2177
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2178 2179 2180 2181 2182
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2183
                      user_defined_grad_outputs=None,
2184
                      parallel=False):
Y
Yu Yang 已提交
2185
        prog = Program()
2186
        scope = core.Scope()
Y
Yu Yang 已提交
2187
        block = prog.global_block()
2188
        self._append_ops(block)
Y
Yu Yang 已提交
2189

2190
        inputs = self._get_inputs(block)
2191
        outputs = self._get_outputs(block)
2192
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2193

2194
        if user_defined_grad_outputs is None:
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2235
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2236 2237 2238 2239
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2240 2241
        if parallel:
            use_cuda = False
2242
            if isinstance(place, fluid.CUDAPlace):
2243
                use_cuda = True
2244 2245 2246 2247
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2248 2249
        return list(
            map(np.array,
2250 2251 2252 2253 2254
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2268 2269 2270 2271 2272 2273

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")