nn.py 146.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode, _in_legacy_dygraph
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
36
from paddle import _C_ops, _legacy_C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199 200 201
        if (self._num_channels == self._groups
                and num_filters % self._num_channels == 0
                and not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
208 209
            if (self._num_channels == self._groups
                    and self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236 237 238 239
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
M
minqiyang 已提交
240 241

    def forward(self, input):
H
hong 已提交
242
        if in_dygraph_mode() and self._l_type == "conv2d":
243 244 245 246
            pre_bias = _C_ops.conv2d(input, self.weight, self._stride,
                                     self._padding, "EXPLICIT",
                                     self._groups if self._groups else 1,
                                     self._dilation, "NCHW", False, -1, False)
H
hong 已提交
247 248 249 250 251 252 253
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)

254 255
        if _non_static_mode() and (self._l_type == 'conv2d'
                                   or self._l_type == 'depthwise_conv2d'):
256
            attrs = ('strides', self._stride, 'paddings', self._padding,
257 258 259
                     'dilations', self._dilation, 'groups',
                     self._groups if self._groups else 1, 'use_cudnn',
                     self._use_cudnn, 'use_mkldnn', self._use_mkldnn)
260
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
261 262
            pre_bias = out

263 264 265 266
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
267 268
        inputs = {
            'Input': [input],
269
            'Filter': [self.weight],
270 271 272 273 274 275 276
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
277
            'use_mkldnn': self._use_mkldnn,
278
        }
279 280 281

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
282 283 284
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

285 286 287 288 289 290 291
        self._helper.append_op(type=self._l_type,
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs=attrs)
M
minqiyang 已提交
292

293
        if self.bias is not None:
294 295
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
296 297 298 299 300 301 302 303 304 305
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={
                                       'axis': 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
306 307
        else:
            pre_act = pre_bias
M
minqiyang 已提交
308

L
lujun 已提交
309
        # Currently, we don't support inplace in dygraph mode
310
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
311 312


L
lujun 已提交
313
class Conv3D(layers.Layer):
314
    r"""
315 316 317 318
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
319 320
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
321 322 323 324 325 326 327 328 329 330 331 332 333 334
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
335
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

361
    Parameters:
362
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
363
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
364
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
365
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
366 367 368
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
369
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
370 371
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
372
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
373 374
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
375
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
376
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
377
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
378 379 380
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
381 382
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
383 384 385
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
386 387
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
388 389 390
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
391 392 393 394 395
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
396
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
397

D
DuYao 已提交
398 399 400 401
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
402

403
    Returns:
D
DuYao 已提交
404
        None.
405 406 407 408 409 410 411 412

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

413 414 415 416 417 418
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
419
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
420 421
              ret = conv3d(fluid.dygraph.base.to_variable(data))

422 423
    """

L
lujun 已提交
424
    def __init__(self,
425
                 num_channels,
L
lujun 已提交
426 427 428 429 430 431 432 433 434
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
435 436
                 act=None,
                 dtype='float32'):
L
lujun 已提交
437
        assert param_attr is not False, "param_attr should not be False here."
438 439
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
440 441 442
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
443
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
444 445
        self._act = act
        self._use_cudnn = use_cudnn
446 447 448 449
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
450
        self._dtype = dtype
451 452

        if self._groups is None:
453
            num_filter_channels = self._num_channels
L
lujun 已提交
454
        else:
455
            if self._num_channels % self._groups != 0:
L
lujun 已提交
456
                raise ValueError("num_channels must be divisible by groups.")
457
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
458

459 460
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
461 462 463

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
464
                2] * self._num_channels
L
lujun 已提交
465 466 467
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

468
        self.weight = self.create_parameter(
469
            attr=self._param_attr,
L
lujun 已提交
470 471 472 473
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

474 475 476 477
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
478 479 480 481 482

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        self._helper.append_op(type='conv3d',
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn,
                                   'use_mkldnn': False
                               })
L
lujun 已提交
498

499
        if self.bias is not None:
500 501
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
502 503 504 505 506 507 508
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
509 510
        else:
            pre_act = pre_bias
L
lujun 已提交
511 512 513 514 515

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
516
    r"""
L
lujun 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
581

582
    Parameters:
583
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
584 585
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
586
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
587
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
588
            Otherwise, the filter will be a square.
D
DuYao 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
604
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
605
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
606
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
607 608 609 610
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
611 612
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
613 614
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
615 616
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
617 618 619
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
620 621 622 623 624 625 626
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
627

D
DuYao 已提交
628 629 630 631
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
632

L
lujun 已提交
633
    Returns:
D
DuYao 已提交
634
        None.
L
lujun 已提交
635 636 637 638 639 640 641 642

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

643 644 645 646 647 648
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
649
                    num_channels=3,
650 651 652 653 654
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
655 656
    """

L
lujun 已提交
657
    def __init__(self,
658
                 num_channels,
L
lujun 已提交
659
                 num_filters,
660
                 filter_size,
L
lujun 已提交
661 662 663 664 665 666 667 668
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
669 670
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
671 672 673 674 675 676 677
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
678
        self._num_channels = num_channels
L
lujun 已提交
679 680 681 682 683 684
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
685
        self._dtype = dtype
L
lujun 已提交
686

687 688
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
689

690 691
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
692 693 694 695 696 697 698
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
699 700 701 702

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
703 704 705 706 707 708 709 710 711 712 713 714 715 716
        self._helper.append_op(type="conv3d_transpose",
                               inputs={
                                   'Input': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Output': pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn
                               })
L
lujun 已提交
717 718 719 720

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
721 722 723 724 725 726 727
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
L
lujun 已提交
728 729 730 731 732 733 734
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
735
class Pool2D(layers.Layer):
736
    r"""
737

738 739 740 741 742
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
743 744
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

790
    Parameters:
791
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
792
            it must contain two integers, (pool_size_Height, pool_size_Width).
793 794 795 796
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
797
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
798 799 800
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
801
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
802 803 804 805 806 807 808
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
809 810 811 812
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
813 814

    Returns:
815
        None
816 817

    Raises:
818 819 820 821
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
822 823 824 825 826

    Examples:

        .. code-block:: python

L
lujun 已提交
827
          import paddle.fluid as fluid
828 829
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
830 831

          with fluid.dygraph.guard():
832
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
833
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
834 835 836
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
837
             pool2d_res = pool2d(to_variable(data))
838 839 840

    """

M
minqiyang 已提交
841 842 843 844 845 846 847 848
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
849 850 851 852
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

866
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
867

868 869 870 871 872
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

873
        super(Pool2D, self).__init__()
M
minqiyang 已提交
874 875 876 877 878 879 880 881 882 883

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
884
        self._data_format = data_format
M
minqiyang 已提交
885 886 887
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
888
        if _non_static_mode():
889 890 891 892 893 894 895
            if not self._use_mkldnn and in_dygraph_mode():
                return _C_ops.pool2d(input, self._pool_size, self._pool_stride,
                                     self._pool_padding, self._ceil_mode,
                                     self._exclusive, self._data_format,
                                     self._pool_type, self._global_pooling,
                                     False, "EXPLICIT", self._use_cudnn)

896 897 898 899
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
900 901
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
902
            return _legacy_C_ops.pool2d(input, *attrs)
903

904 905 906 907
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

908 909 910 911 912 913 914 915
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
916
            "use_mkldnn": self._use_mkldnn,
917
            "exclusive": self._exclusive,
918
            "data_format": self._data_format,
919 920 921
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
922 923
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

924 925 926 927
        self._helper.append_op(type=self._l_type,
                               inputs={"X": input},
                               outputs={"Out": pool_out},
                               attrs=attrs)
M
minqiyang 已提交
928
        return pool_out
M
minqiyang 已提交
929 930


S
songyouwei 已提交
931 932
class Linear(layers.Layer):
    """
933
    
S
songyouwei 已提交
934 935 936 937 938 939 940 941
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

942
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
993 994 995 996 997 998 999 1000
        self.weight = self.create_parameter(shape=[input_dim, output_dim],
                                            attr=param_attr,
                                            dtype=dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[output_dim],
                                          attr=bias_attr,
                                          dtype=dtype,
                                          is_bias=True)
S
songyouwei 已提交
1001

1002
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
1003

S
songyouwei 已提交
1004
    def forward(self, input):
J
Jiabin Yang 已提交
1005
        if _non_static_mode():
1006
            pre_bias = _varbase_creator(dtype=input.dtype)
1007 1008 1009
            _legacy_C_ops.matmul(input, self.weight, pre_bias, 'transpose_X',
                                 False, 'transpose_Y', False, "alpha", 1,
                                 "use_mkldnn", self._use_mkldnn)
1010
            pre_act = dygraph_utils._append_bias_in_dygraph(
1011 1012 1013 1014
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
1015

1016 1017
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
1018 1019 1020 1021

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

1022
        attrs = {
S
songyouwei 已提交
1023 1024 1025
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1026
            "use_mkldnn": self._use_mkldnn,
1027 1028
        }
        inputs = {"X": [input], "Y": [self.weight]}
1029

S
songyouwei 已提交
1030
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1031 1032 1033 1034
        self._helper.append_op(type="matmul",
                               inputs=inputs,
                               outputs={"Out": tmp},
                               attrs=attrs)
1035
        if self.bias is not None:
S
songyouwei 已提交
1036 1037
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [tmp],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={
                                       'axis': len(input.shape) - 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
S
songyouwei 已提交
1048 1049 1050 1051 1052
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1053
class InstanceNorm(layers.Layer):
1054
    r"""
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1085
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1086 1087 1088
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1089 1090
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1091 1092 1093
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1094
             If it is set to False, will not create bias_attr. Default: None.
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1129 1130
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1131 1132 1133 1134 1135
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1136 1137 1138 1139 1140 1141 1142
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
1143 1144 1145 1146 1147
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[num_channels],
                                              dtype=self._dtype,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
C
ceci3 已提交
1148 1149 1150
        else:
            self.scale = None
            self.bias = None
1151 1152

    def forward(self, input):
1153
        if in_dygraph_mode():
1154 1155
            out = _C_ops.instance_norm(input, self.scale, self.bias,
                                       self._epsilon)
1156 1157
            return out
        if _in_legacy_dygraph():
1158 1159 1160
            out, _, _ = _legacy_C_ops.instance_norm(input, self.scale,
                                                    self.bias, 'epsilon',
                                                    self._epsilon)
1161 1162 1163 1164 1165 1166 1167
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1168 1169 1170 1171
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

1186 1187 1188 1189
        self._helper.append_op(type="instance_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
1190 1191 1192
        return instance_norm_out


M
minqiyang 已提交
1193
class BatchNorm(layers.Layer):
1194
    r"""
1195

1196 1197 1198 1199 1200
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1201 1202 1203 1204
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1205 1206
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1207
    Calculated as follows:
1208 1209 1210

    ..  math::

1211 1212 1213 1214
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1215

1216 1217
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1218 1219 1220

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1221 1222 1223 1224 1225 1226
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1227

1228 1229
    The normalization function formula is as follows:
 
1230 1231
    ..  math::

1232 1233 1234 1235
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1236

1237 1238 1239
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1240

1241
    Parameters:
1242
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1243
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1244 1245 1246
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1247 1248 1249
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1250 1251 1252
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1253
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1254 1255 1256
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1257 1258 1259 1260 1261 1262
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1263 1264
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1265
        use_global_stats(bool, optional): Whether to use global mean and
1266 1267 1268
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1269 1270 1271 1272
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1273 1274

    Returns:
1275
        None
1276 1277 1278

    Examples:
        .. code-block:: python
L
lujun 已提交
1279 1280

          import paddle.fluid as fluid
1281 1282
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1283

1284
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1285
          with fluid.dygraph.guard():
1286
              x = to_variable(x)
1287
              batch_norm = fluid.BatchNorm(10)
1288
              hidden1 = batch_norm(x)
1289 1290
    """

M
minqiyang 已提交
1291 1292 1293 1294 1295 1296 1297 1298
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1299
                 dtype='float32',
M
minqiyang 已提交
1300 1301 1302 1303
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1304
                 do_model_average_for_mean_and_var=True,
1305 1306
                 use_global_stats=False,
                 trainable_statistics=False):
1307
        super(BatchNorm, self).__init__()
1308
        self._param_attr = param_attr
1309
        self._bias_attr = bias_attr
1310
        self._act = act
1311
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1312 1313 1314

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1315 1316
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1317 1318 1319 1320 1321 1322
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1323 1324 1325 1326
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
1327
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1328

1329 1330 1331 1332
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
1333
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1334

1335 1336 1337 1338 1339 1340 1341
        self._mean = self.create_parameter(attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                           shape=param_shape,
                                           dtype=self._dtype)
1342
        self._mean.stop_gradient = True
M
minqiyang 已提交
1343

1344 1345 1346 1347 1348 1349 1350
        self._variance = self.create_parameter(attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                               shape=param_shape,
                                               dtype=self._dtype)
1351
        self._variance.stop_gradient = True
M
minqiyang 已提交
1352 1353

        self._in_place = in_place
1354
        self._data_layout = data_layout
M
minqiyang 已提交
1355 1356 1357
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1358
        self._fuse_with_relu = False
M
minqiyang 已提交
1359
        self._use_global_stats = use_global_stats
1360
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1361 1362 1363 1364 1365 1366 1367

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1368

J
Jiabin Yang 已提交
1369
        if _non_static_mode():
H
hong 已提交
1370
            if in_dygraph_mode():
1371
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
H
hong 已提交
1372 1373 1374 1375
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
1376 1377 1378 1379
                return dygraph_utils._append_activation_in_dygraph(
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)

            elif _in_legacy_dygraph():
H
hong 已提交
1380 1381 1382 1383 1384 1385
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
1386
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
H
hong 已提交
1387
                    input, self.weight, self.bias, self._mean, self._variance,
1388 1389
                    None, mean_out, variance_out, *attrs)

1390
            return dygraph_utils._append_activation_in_dygraph(
1391
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1392

1393 1394 1395
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1396 1397 1398 1399 1400 1401 1402
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1403 1404
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1405
        }
M
minqiyang 已提交
1406

1407 1408 1409 1410 1411 1412 1413 1414
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1415 1416 1417 1418
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1419 1420
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1421

1422 1423
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1424 1425 1426 1427 1428 1429 1430 1431

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1432
        if reserve_space is not None:
1433
            outputs["ReserveSpace"] = [reserve_space]
1434

1435 1436 1437 1438
        self._helper.append_op(type="batch_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
M
minqiyang 已提交
1439

L
lujun 已提交
1440
        # Currently, we don't support inplace in dygraph mode
1441
        return self._helper.append_activation(batch_norm_out, self._act)
1442 1443


1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1523 1524 1525
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1526 1527 1528 1529 1530
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1531 1532
            'is_test':
            not self.training if _non_static_mode() else self._is_test,
1533 1534 1535 1536 1537
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1538
        if _non_static_mode():
1539
            attrs = sum(attrs.items(), ())
1540
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1541 1542 1543 1544 1545 1546
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1547 1548 1549 1550 1551 1552 1553
        self._helper.append_op(type='dropout',
                               inputs={'X': [input]},
                               outputs={
                                   'Out': [out],
                                   'Mask': [mask]
                               },
                               attrs=attrs)
1554 1555 1556
        return out


1557
class Embedding(layers.Layer):
1558
    r"""
1559 1560 1561 1562
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1563 1564
    **Embedding Layer**

Z
zhongpu 已提交
1565 1566 1567 1568 1569 1570
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1571 1572
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1573

1574
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1575 1576 1577 1578 1579 1580 1581
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1582 1583
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1597

1598
    Parameters:
L
lujun 已提交
1599 1600
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1619
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1620 1621 1622
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1623

Z
zhongpu 已提交
1624 1625
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1626

1627
    Returns:
Z
zhongpu 已提交
1628
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1629 1630

    Examples:
1631

1632 1633
        .. code-block:: python

L
lujun 已提交
1634 1635 1636 1637
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1638
          # example 1
1639 1640
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1641 1642
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1643
              emb = fluid.dygraph.Embedding(
1644 1645 1646
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1647
              static_rlt3 = emb(base.to_variable(inp_word))
1648
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1663 1664
    """

1665 1666 1667 1668 1669 1670 1671
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1672
        super(Embedding, self).__init__()
1673 1674 1675 1676
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1677
            size[0] + padding_idx)
1678 1679 1680

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1681
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1682 1683 1684
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1685 1686 1687 1688
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._size,
                                            dtype=self._dtype,
                                            is_bias=False)
1689 1690

    def forward(self, input):
J
Jiabin Yang 已提交
1691
        if _non_static_mode():
1692 1693 1694 1695
            return _legacy_C_ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)
1696

1697 1698 1699
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1700 1701 1702 1703 1704 1705
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1706

1707
        out = self._helper.create_variable_for_type_inference(self._dtype)
1708 1709 1710 1711 1712 1713 1714
        self._helper.append_op(type='lookup_table_v2',
                               inputs={
                                   'Ids': input,
                                   'W': self.weight
                               },
                               outputs={'Out': out},
                               attrs=attrs)
1715 1716

        return out
M
minqiyang 已提交
1717 1718


1719
class LayerNorm(layers.Layer):
1720
    r"""
1721 1722 1723 1724
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1725 1726 1727
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1728
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1729

1730
    The formula is as follows:
1731

1732
    ..  math::
1733

1734
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1735

1736
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1737

1738
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1739

1740 1741 1742 1743 1744
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1745

1746
    Parameters:
1747 1748 1749 1750
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1751
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1752
            normalization. Default: True.
1753
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1754
            normalization. Default: True.
1755
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1756
            division by zero. Default: 1e-05.
1757
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1758 1759 1760
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1761
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1762
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1763 1764 1765
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1766
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1767
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1768
                  Default: None.
1769 1770
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1771
    Returns:
1772
        None
1773

1774
    Examples:
1775

1776 1777 1778
        .. code-block:: python

          import paddle.fluid as fluid
1779
          from paddle.fluid.dygraph.base import to_variable
1780 1781
          import numpy

1782
          x = numpy.random.random((3, 32, 32)).astype('float32')
1783
          with fluid.dygraph.guard():
1784
              x = to_variable(x)
1785
              layerNorm = fluid.LayerNorm([32, 32])
1786
              ret = layerNorm(x)
1787

1788
    """
1789

1790
    def __init__(self,
1791
                 normalized_shape,
1792 1793 1794 1795 1796
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1797 1798 1799 1800 1801
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1802

1803
        self._normalized_shape = list(normalized_shape)
1804 1805 1806 1807 1808 1809
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1810 1811
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1812
        if self._scale:
1813
            self.weight = self.create_parameter(
1814 1815 1816 1817
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1818 1819
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1820
                logging.warn("param_attr are only available with scale is True")
1821
            self.weight = None
1822

1823 1824
        if self._shift:
            assert self._bias_attr is not False
1825 1826 1827 1828
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              is_bias=True)
1829 1830
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1831
                logging.warn("bias_attr are only available with shift is True")
1832
            self.bias = None
1833 1834

    def forward(self, input):
1835 1836 1837 1838 1839 1840 1841
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
1842 1843 1844 1845 1846
            raise ValueError('Given normalized_shape is ' +
                             str_normalized_shape +
                             ', expected input with shape [*, ' +
                             str_normalized_shape[1:] +
                             ', but got input shape ' + str(input_shape))
1847

J
Jiabin Yang 已提交
1848
        if _non_static_mode():
H
hong 已提交
1849
            if in_dygraph_mode():
1850 1851 1852
                pre_act, _, _, = _C_ops.layer_norm(input, self.weight,
                                                   self.bias, self._epsilon,
                                                   self._begin_norm_axis, False)
H
hong 已提交
1853 1854 1855
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
            else:
1856 1857 1858
                pre_act, _, _ = _legacy_C_ops.layer_norm(
                    input, self.weight, self.bias, 'epsilon', self._epsilon,
                    'begin_norm_axis', self._begin_norm_axis)
H
hong 已提交
1859 1860
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
1861

1862 1863 1864
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1865
        inputs = dict()
1866
        inputs['X'] = [input]
1867
        if self._scale:
1868
            inputs['Scale'] = [self.weight]
1869
        if self._shift:
1870 1871 1872 1873 1874 1875
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1876 1877 1878 1879 1880 1881 1882 1883
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        self._helper.append_op(type="layer_norm",
                               inputs=inputs,
                               outputs={
                                   "Y": layer_norm_out,
                                   "Mean": mean_out,
                                   "Variance": variance_out,
                               },
                               attrs={
                                   "epsilon": self._epsilon,
                                   "begin_norm_axis": self._begin_norm_axis
                               })
1895

1896
        return self._helper.append_activation(layer_norm_out, act=self._act)
1897 1898


M
minqiyang 已提交
1899 1900 1901
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1902 1903 1904 1905 1906
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1917
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1943
    Parameters:
L
lujun 已提交
1944
        size (int): The input dimension value.
D
DuYao 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1954 1955 1956 1957


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1958 1959 1960 1961
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1962 1963 1964 1965 1966
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1967
            is initialized zero. The default value is None.
L
lujun 已提交
1968
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1969
                             The default value is 'tanh'.
L
lujun 已提交
1970
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1971 1972 1973
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1974

D
DuYao 已提交
1975 1976 1977 1978
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1979

M
minqiyang 已提交
1980
    Returns:
D
DuYao 已提交
1981 1982 1983 1984
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1998
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1999 2000 2001
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
2002
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
2003 2004 2005
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
2016
        super(GRUUnit, self).__init__()
2017
        self._bias_attr = bias_attr
M
minqiyang 已提交
2018 2019 2020 2021
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2022 2023
            relu=3,
        )
H
Hongyu Liu 已提交
2024 2025
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2026

M
minqiyang 已提交
2027
        self._dtype = dtype
M
minqiyang 已提交
2028 2029
        size = size // 3
        # create weight
2030 2031 2032
        self.weight = self.create_parameter(attr=param_attr,
                                            shape=[size, 3 * size],
                                            dtype=dtype)
M
minqiyang 已提交
2033 2034

        # create bias
M
minqiyang 已提交
2035
        bias_size = [1, 3 * size]
2036
        self._bias_size = bias_size
2037 2038 2039 2040
        self.bias = self.create_parameter(attr=bias_attr,
                                          shape=bias_size,
                                          dtype=dtype,
                                          is_bias=True)
M
minqiyang 已提交
2041

M
minqiyang 已提交
2042
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2043
        if _non_static_mode():
2044
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2045 2046 2047 2048
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2049 2050 2051 2052
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2053 2054 2055 2056 2057
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2058
        if self.bias is not None:
2059
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2060 2061 2062 2063 2064
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
        self._helper.append_op(type='gru_unit',
                               inputs=inputs,
                               outputs={
                                   'Gate': gate,
                                   'ResetHiddenPrev': reset_hidden_pre,
                                   'Hidden': updated_hidden,
                               },
                               attrs={
                                   'activation': self.activation,
                                   'gate_activation': self.gate_activation,
                               })
M
minqiyang 已提交
2076 2077

        return updated_hidden, reset_hidden_pre, gate
2078 2079 2080 2081


class NCE(layers.Layer):
    """
2082 2083 2084 2085 2086
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2087
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2088

2089
    Parameters:
2090 2091
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2092
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2093 2094 2095
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2096
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2097 2098 2099 2100
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2101
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2102
        sampler (str, optional): The sampler used to sample class from negative classes.
2103 2104
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2105
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2106
                       It is used when sampler is set to 'custom_dist'.
2107
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2108
                       Default: None.
2109 2110
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2111
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2112

2113 2114
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2115

2116 2117
        **bias** (Parameter or None): the learnable bias of this layer.
    
2118
    Returns:
2119
        None
2120 2121 2122 2123

    Examples:
        .. code-block:: python

2124 2125 2126
            import numpy as np
            import paddle.fluid as fluid

2127
            window_size = 5
2128 2129
            dict_size = 20
            label_word = int(window_size // 2) + 1
2130
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2152
                nce = fluid.NCE(
2153
                             num_total_classes=dict_size,
2154
                             dim=embs3.shape[1],
2155 2156 2157 2158 2159 2160 2161
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2162 2163
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2164 2165 2166 2167 2168

    """

    def __init__(self,
                 num_total_classes,
2169
                 dim,
2170
                 sample_weight=None,
2171 2172 2173 2174 2175 2176
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2177 2178 2179
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2180 2181 2182
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2183
        self._dtype = dtype
2184
        self._inputs = dict()
2185
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2273
        self.weight = self.create_parameter(
2274 2275 2276
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2277
            dtype=self._dtype)
2278
        if self._bias_attr:
2279
            self.bias = self.create_parameter(
2280 2281 2282
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2283
                dtype=self._dtype)
2284 2285
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2286

2287
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2288
        if _non_static_mode():
W
Weilong Wu 已提交
2289 2290 2291 2292 2293
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
2294 2295 2296 2297 2298 2299
            cost, _, _ = _legacy_C_ops.nce(input, label, self.weight, self.bias,
                                           self._inputs['SampleWeight'],
                                           self._inputs['CustomDistProbs'],
                                           self._inputs['CustomDistAlias'],
                                           self._inputs['CustomDistAliasProbs'],
                                           *attrs)
W
Weilong Wu 已提交
2300 2301
            return cost / (self._num_neg_samples + 1)

2302 2303 2304 2305
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

2320 2321 2322 2323 2324 2325 2326 2327
        self._helper.append_op(type='nce',
                               inputs=self._inputs,
                               outputs={
                                   'Cost': cost,
                                   'SampleLogits': sample_logits,
                                   'SampleLabels': sample_labels
                               },
                               attrs=self._attrs)
2328 2329 2330 2331
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2332
    r"""
2333 2334 2335 2336
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2337 2338 2339 2340 2341
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2342
    Parameters:
L
lujun 已提交
2343
        mode (str): The mode for weight sharing. It supports all, channel
2344 2345 2346
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2347 2348 2349
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2350
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2351 2352
          This argument is required when mode is "element".
          Default: None.
2353 2354
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2355
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2356

2357 2358 2359
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2360
    Returns:
2361
        None
2362 2363 2364 2365 2366

    Examples:

        .. code-block:: python

L
lujun 已提交
2367
          import paddle.fluid as fluid
2368
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2369 2370 2371 2372
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2373
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2385
                 input_shape=inp_np.shape,
L
lujun 已提交
2386
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2387
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2388

2389 2390
    """

S
songyouwei 已提交
2391 2392 2393 2394 2395
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2396
                 dtype='float32'):
2397 2398
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2399 2400
        self._mode = mode
        self._param_attr = param_attr
2401
        self._dtype = dtype
S
songyouwei 已提交
2402 2403 2404 2405 2406 2407
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2408
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2409
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2410
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2411 2412
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2413
        elif mode == 'element':
2414 2415 2416 2417
            assert isinstance(
                input_shape,
                (list, tuple
                 )), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2418 2419 2420
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2421 2422 2423 2424 2425
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._alpha_shape,
                                            dtype='float32',
                                            is_bias=False,
                                            default_initializer=Constant(1.0))
2426 2427

    def forward(self, input):
2428 2429 2430
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2431
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2432
        out = self._helper.create_variable_for_type_inference(self._dtype)
2433 2434 2435 2436 2437 2438 2439
        self._helper.append_op(type="prelu",
                               inputs={
                                   "X": input,
                                   'Alpha': self.weight
                               },
                               attrs={"mode": self._mode},
                               outputs={"Out": out})
2440 2441 2442 2443
        return out


class BilinearTensorProduct(layers.Layer):
2444
    r"""
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2459
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2460

2461
    Parameters:
2462 2463 2464 2465 2466
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2467 2468 2469 2470
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2471
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2472
           If it is set to None, the bias is initialized zero. The default value is None.
2473
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2474

D
DuYao 已提交
2475 2476 2477 2478
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2479

2480
    Returns:
W
wanghuancoder 已提交
2481
       Tensor: A 2-D Tensor of shape [batch_size, size].
2482 2483 2484 2485

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2495

2496 2497 2498
    """

    def __init__(self,
2499 2500 2501
                 input1_dim,
                 input2_dim,
                 output_dim,
2502 2503 2504
                 name=None,
                 act=None,
                 param_attr=None,
2505 2506 2507
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2508 2509 2510 2511
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2512 2513 2514
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2515
        self._inputs = dict()
2516
        self._dtype = dtype
2517

2518
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2519 2520 2521 2522
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
2523
        bias_size = [1, self._output_dim]
2524 2525 2526 2527 2528 2529 2530 2531
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=bias_size,
                                          dtype=self._dtype,
                                          is_bias=True)

    @deprecated(since="2.0.0",
                update_to="paddle.nn.Bilinear",
                reason="New name and new args in Bilinear, easier to use.")
2532
    def forward(self, x, y):
2533 2534 2535 2536
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2537
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2538
        if self.bias is not None:
2539
            self._inputs["Bias"] = self.bias
2540
        if self._name is not None:
2541 2542 2543 2544
            out = self._helper.create_variable(name=".".join(
                [self.full_name(), self._name]),
                                               dtype=self._dtype,
                                               persistable=False)
2545
        else:
2546 2547 2548 2549 2550
            out = self._helper.create_variable(dtype=self._dtype,
                                               persistable=False)
        self._helper.append_op(type="bilinear_tensor_product",
                               inputs=self._inputs,
                               outputs={"Out": out})
2551 2552

        # add activation
2553
        return self._helper.append_activation(out, act=self._act)
2554 2555 2556


class Conv2DTranspose(layers.Layer):
2557
    r"""
2558 2559
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2560
    The convolution2D transpose layer calculates the output based on the input,
2561 2562 2563
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2564 2565
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2566 2567
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2568 2569 2570
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2571 2572
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2573 2574 2575 2576 2577 2578 2579 2580 2581

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2582 2583
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2584
    * :math:`\\ast`: Convolution operation.
2585
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2610
    Parameters:
2611
        num_channels(int): The number of channels in the input image.
2612
        num_filters(int): The number of the filter. It is as same as the output
2613
            feature map.
2614 2615 2616
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2617
        output_size(int or tuple, optional): The output image size. If output size is a
2618 2619 2620
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2621
            should follow the formula above. Default: None.
2622
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2623
            contain two integers, (padding_H, padding_W). Otherwise, the
2624 2625
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2626
            contain two integers, (stride_H, stride_W). Otherwise, the
2627 2628
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2629
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2630
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2631
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2632 2633 2634 2635
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2636 2637
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2638 2639 2640
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2641
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2642 2643 2644 2645
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2646
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2647
            library is installed. Default: True.
2648
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2649
            Default: None.
2650
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2651

2652 2653
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2654

2655
        **bias** (Parameter or None): the learnable bias of this layer.
2656

2657 2658
    Returns:
        None
2659 2660 2661 2662

    Examples:
       .. code-block:: python

2663
          import paddle.fluid as fluid
2664
          import numpy as np
2665 2666

          with fluid.dygraph.guard():
2667
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2668
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2669
                    num_channels=32, num_filters=2, filter_size=3)
2670 2671
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2672 2673 2674
    """

    def __init__(self,
2675
                 num_channels,
2676
                 num_filters,
2677
                 filter_size,
2678 2679 2680 2681 2682 2683 2684 2685
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2686 2687 2688
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2689 2690 2691
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2692
        self._act = act
2693
        self._groups = groups
2694
        self._num_channels = num_channels
2695 2696 2697 2698 2699 2700 2701
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2702
        self._dtype = dtype
2703

2704 2705 2706
        if (self._num_channels == self._groups
                and self._num_filters == self._num_channels
                and not self._use_cudnn):
2707
            self._op_type = 'depthwise_conv2d_transpose'
2708 2709
        else:
            self._op_type = 'conv2d_transpose'
2710 2711 2712 2713 2714

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2715 2716
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2717 2718 2719

        if self._output_size is None:
            self._output_size = []
2720 2721 2722 2723 2724 2725 2726 2727
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
                    self._output_size)
            else:
                self._output_size = utils.convert_to_list(
                    self._output_size, 2, 'output_size')
        elif isinstance(self._output_size, int):
2728 2729
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        elif isinstance(self._output_size, Variable):
            check_dtype(self._output_size.dtype, 'output_size',
                        ['int32', 'int64'], 'Conv2DTranspose')
            if len(self._output_size.shape) == 1 and (
                    self._output_size.shape[0] == 1
                    or self._output_size.shape[0] == 2):
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
2741
        else:
2742
            raise ValueError("output_size should be list or int or Tensor")
2743 2744
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2745
        filter_shape = [self._num_channels, self._num_filters // self._groups
2746 2747
                        ] + self._filter_size

2748 2749 2750
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
2751

2752 2753 2754 2755
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2756

2757
    def forward(self, input):
J
Jiabin Yang 已提交
2758
        if _non_static_mode():
2759
            op = getattr(_legacy_C_ops, self._op_type)
2760 2761 2762 2763 2764
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
2765 2766 2767 2768
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=self._act)
2769

2770 2771 2772 2773
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2784 2785
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
2786 2787 2788 2789
        self._helper.append_op(type=self._op_type,
                               inputs=inputs,
                               outputs={'Output': pre_bias},
                               attrs=attrs)
2790

2791
        if self.bias is not None:
2792 2793
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2794 2795 2796 2797 2798 2799 2800
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2801 2802 2803 2804
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2805 2806 2807 2808 2809 2810 2811 2812 2813
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2814
    Parameters:
L
lujun 已提交
2815
        name_scope(str): The name of this class.
2816
        num_filters (int): number of filters.
L
lujun 已提交
2817 2818 2819
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2832 2833 2834 2835
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2849
        assert not _non_static_mode(
2850
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2851 2852 2853 2854 2855 2856 2857
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2858
        self._act = act
2859

2860
    def _build_once(self, input):
2861 2862
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2863 2864 2865
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype)
2866

2867 2868 2869 2870
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2871

2872 2873
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
        self._helper.append_op(type='sequence_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight],
                               },
                               outputs={"Out": pre_bias},
                               attrs={
                                   'contextStride': self._filter_stride,
                                   'contextStart': -int(self._filter_size // 2),
                                   'contextLength': self._filter_size
                               })
2885

2886
        if self.bias is not None:
2887 2888
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2889 2890 2891 2892 2893 2894 2895
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2896 2897 2898 2899
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2900 2901 2902


class RowConv(layers.Layer):
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2921
    Parameters:
L
lujun 已提交
2922
        name_scope(str): The name of this class.
2923 2924 2925
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2926 2927
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2928

2929 2930 2931
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2932
    Returns:
L
lujun 已提交
2933 2934
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2950 2951 2952 2953 2954
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2955
        assert not _non_static_mode(
2956
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2957 2958 2959 2960 2961
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2962
    def _build_once(self, input):
L
lujun 已提交
2963 2964
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2965 2966 2967 2968
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
2969 2970 2971

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2972 2973 2974 2975 2976 2977
        self._helper.append_op(type='row_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Out': [out]})
L
lujun 已提交
2978 2979 2980 2981 2982
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2983 2984 2985 2986
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2987 2988 2989 2990 2991 2992
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2993
        channels(int): The number of channels of input.
2994 2995 2996 2997 2998 2999 3000 3001 3002
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3003
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3017
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3018
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3019 3020 3021 3022

    """

    def __init__(self,
3023
                 channels,
L
lujun 已提交
3024 3025 3026 3027 3028
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
3029 3030 3031
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
3032 3033 3034
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3035
        self._channels = channels
L
lujun 已提交
3036 3037
        self._groups = groups
        self._act = act
3038
        self._dtype = dtype
L
lujun 已提交
3039 3040 3041
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3042
        param_shape = [self._channels]
L
lujun 已提交
3043

3044 3045 3046 3047
        self.weight = self.create_parameter(attr=self._param_attr or False,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
3048

3049 3050 3051 3052
        self.bias = self.create_parameter(attr=self._bias_attr or False,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
3053 3054

    def forward(self, input):
3055 3056 3057 3058
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
3059
        if in_dygraph_mode():
3060 3061
            out = _C_ops.group_norm(input, self.weight, self.bias,
                                    self._epsilon, self._groups, "NCHW")
3062

3063 3064 3065
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3066
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3067 3068
            out, _, _ = _legacy_C_ops.group_norm(input, self.weight, self.bias,
                                                 mean_out, variance_out, *attrs)
3069 3070

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
            self._helper.append_op(type="group_norm",
                                   inputs=inputs,
                                   outputs={
                                       "Y": group_norm_out,
                                       "Mean": mean_out,
                                       "Variance": variance_out,
                                   },
                                   attrs={
                                       "epsilon": self._epsilon,
                                       "groups": self._groups
                                   })
J
Jiabin Yang 已提交
3093 3094

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3095 3096 3097


class SpectralNorm(layers.Layer):
3098
    r"""
3099 3100
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3111
    :attr:`power_iters` should be a positive integer, do following
3112 3113 3114 3115
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3116
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3117

3118
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3119 3120 3121 3122 3123 3124 3125 3126

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3127
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3128 3129 3130 3131


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3132
    Parameters:
3133
        weight_shape(list or tuple): The shape of weight parameter.
3134 3135 3136 3137
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3138
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3139 3140

    Returns:
3141
        None
3142 3143 3144 3145

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3146 3147
            import paddle
            x = paddle.rand((2,8,32,32))
3148

C
Chen Long 已提交
3149 3150 3151 3152
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3153 3154 3155

    """

3156 3157 3158 3159 3160 3161 3162
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3163 3164 3165
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3166
        self._dtype = dtype
L
lujun 已提交
3167

3168
        self._weight_shape = list(weight_shape)
3169 3170 3171 3172 3173 3174
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3175 3176
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3177

3178 3179 3180 3181 3182
        self.weight_u = self.create_parameter(attr=ParamAttr(),
                                              shape=[h],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3183
        self.weight_u.stop_gradient = True
L
lujun 已提交
3184

3185 3186 3187 3188 3189
        self.weight_v = self.create_parameter(attr=ParamAttr(),
                                              shape=[w],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3190
        self.weight_v.stop_gradient = True
L
lujun 已提交
3191 3192

    def forward(self, weight):
3193 3194 3195 3196
        if in_dygraph_mode():
            return _C_ops.spectral_norm(weight, self.weight_u, self.weight_v,
                                        self._dim, self._power_iters, self._eps)

3197 3198
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3199
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3200
        out = self._helper.create_variable_for_type_inference(self._dtype)
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
        self._helper.append_op(type="spectral_norm",
                               inputs=inputs,
                               outputs={
                                   "Out": out,
                               },
                               attrs={
                                   "dim": self._dim,
                                   "power_iters": self._power_iters,
                                   "eps": self._eps,
                               })
L
lujun 已提交
3211 3212 3213 3214 3215

        return out


class TreeConv(layers.Layer):
3216
    """
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3227
        feature_size(int): last dimension of nodes_vector.
3228 3229 3230 3231 3232 3233 3234
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3235
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3236

3237 3238
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3239

3240
        **bias** (Parameter or None): the learnable bias of this layer.
3241

3242 3243
    Returns:
        None
L
lujun 已提交
3244

3245
    Examples:
L
lujun 已提交
3246

3247
        .. code-block:: python
3248

3249 3250
          import paddle.fluid as fluid
          import numpy
3251

3252 3253 3254 3255
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3256
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3257
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3258 3259
    """

L
lujun 已提交
3260
    def __init__(self,
3261
                 feature_size,
L
lujun 已提交
3262 3263 3264 3265 3266 3267
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3268 3269 3270
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3271
        self._name = name
3272
        self._feature_size = feature_size
L
lujun 已提交
3273 3274 3275 3276 3277 3278
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3279 3280
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3281
        if self._bias_attr:
3282 3283 3284 3285 3286 3287 3288 3289
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[self._num_filters],
                                              dtype=self._dtype,
                                              is_bias=True)
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=w_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
3290 3291

    def forward(self, nodes_vector, edge_set):
3292 3293
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3294
        if self._name:
3295 3296 3297
            out = self.create_variable(name=self._name,
                                       dtype=self._dtype,
                                       persistable=False)
L
lujun 已提交
3298 3299 3300
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
        self._helper.append_op(type='tree_conv',
                               inputs={
                                   'NodesVector': nodes_vector,
                                   'EdgeSet': edge_set,
                                   'Filter': self.weight
                               },
                               outputs={
                                   'Out': out,
                               },
                               attrs={'max_depth': self._max_depth})
L
lujun 已提交
3311 3312 3313
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3314 3315 3316 3317 3318 3319 3320
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [out],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={'axis': 1})
L
lujun 已提交
3321 3322 3323
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3347
          inp_np = paddle.to_tensor(inp_np)
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3359 3360 3361
        out = paddle.tensor.manipulation.flatten(input,
                                                 start_axis=self.start_axis,
                                                 stop_axis=self.stop_axis)
3362
        return out