nn.py 144.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode, _in_legacy_dygraph
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
W
wanghuancoder 已提交
36
from paddle import _C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199 200 201
        if (self._num_channels == self._groups
                and num_filters % self._num_channels == 0
                and not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
208 209
            if (self._num_channels == self._groups
                    and self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236 237 238 239
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
M
minqiyang 已提交
240 241

    def forward(self, input):
H
hong 已提交
242 243 244 245 246 247 248 249 250 251 252 253
        if in_dygraph_mode() and self._l_type == "conv2d":
            pre_bias = _C_ops.final_state_conv2d(
                input, self.weight, self._stride, self._padding, "EXPLICIT",
                self._groups if self._groups else 1, self._dilation, "NCHW",
                False, -1, False)
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)

254 255
        if _non_static_mode() and (self._l_type == 'conv2d'
                                   or self._l_type == 'depthwise_conv2d'):
256
            attrs = ('strides', self._stride, 'paddings', self._padding,
257 258 259
                     'dilations', self._dilation, 'groups',
                     self._groups if self._groups else 1, 'use_cudnn',
                     self._use_cudnn, 'use_mkldnn', self._use_mkldnn)
W
wanghuancoder 已提交
260
            out = _C_ops.conv2d(input, self.weight, *attrs)
261 262
            pre_bias = out

263 264 265 266
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
267 268
        inputs = {
            'Input': [input],
269
            'Filter': [self.weight],
270 271 272 273 274 275 276
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
277
            'use_mkldnn': self._use_mkldnn,
278
        }
279 280 281

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
282 283 284
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

285 286 287 288 289 290 291
        self._helper.append_op(type=self._l_type,
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs=attrs)
M
minqiyang 已提交
292

293
        if self.bias is not None:
294 295
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
296 297 298 299 300 301 302 303 304 305
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={
                                       'axis': 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
306 307
        else:
            pre_act = pre_bias
M
minqiyang 已提交
308

L
lujun 已提交
309
        # Currently, we don't support inplace in dygraph mode
310
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
311 312


L
lujun 已提交
313
class Conv3D(layers.Layer):
314
    r"""
315 316 317 318
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
319 320
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
321 322 323 324 325 326 327 328 329 330 331 332 333 334
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
335
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

361
    Parameters:
362
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
363
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
364
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
365
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
366 367 368
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
369
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
370 371
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
372
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
373 374
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
375
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
376
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
377
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
378 379 380
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
381 382
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
383 384 385
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
386 387
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
388 389 390
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
391 392 393 394 395
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
396
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
397

D
DuYao 已提交
398 399 400 401
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
402

403
    Returns:
D
DuYao 已提交
404
        None.
405 406 407 408 409 410 411 412

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

413 414 415 416 417 418
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
419
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
420 421
              ret = conv3d(fluid.dygraph.base.to_variable(data))

422 423
    """

L
lujun 已提交
424
    def __init__(self,
425
                 num_channels,
L
lujun 已提交
426 427 428 429 430 431 432 433 434
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
435 436
                 act=None,
                 dtype='float32'):
L
lujun 已提交
437
        assert param_attr is not False, "param_attr should not be False here."
438 439
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
440 441 442
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
443
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
444 445
        self._act = act
        self._use_cudnn = use_cudnn
446 447 448 449
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
450
        self._dtype = dtype
451 452

        if self._groups is None:
453
            num_filter_channels = self._num_channels
L
lujun 已提交
454
        else:
455
            if self._num_channels % self._groups != 0:
L
lujun 已提交
456
                raise ValueError("num_channels must be divisible by groups.")
457
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
458

459 460
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
461 462 463

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
464
                2] * self._num_channels
L
lujun 已提交
465 466 467
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

468
        self.weight = self.create_parameter(
469
            attr=self._param_attr,
L
lujun 已提交
470 471 472 473
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

474 475 476 477
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
478 479 480 481 482

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        self._helper.append_op(type='conv3d',
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn,
                                   'use_mkldnn': False
                               })
L
lujun 已提交
498

499
        if self.bias is not None:
500 501
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
502 503 504 505 506 507 508
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
509 510
        else:
            pre_act = pre_bias
L
lujun 已提交
511 512 513 514 515

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
516
    r"""
L
lujun 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
581

582
    Parameters:
583
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
584 585
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
586
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
587
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
588
            Otherwise, the filter will be a square.
D
DuYao 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
604
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
605
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
606
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
607 608 609 610
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
611 612
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
613 614
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
615 616
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
617 618 619
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
620 621 622 623 624 625 626
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
627

D
DuYao 已提交
628 629 630 631
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
632

L
lujun 已提交
633
    Returns:
D
DuYao 已提交
634
        None.
L
lujun 已提交
635 636 637 638 639 640 641 642

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

643 644 645 646 647 648
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
649
                    num_channels=3,
650 651 652 653 654
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
655 656
    """

L
lujun 已提交
657
    def __init__(self,
658
                 num_channels,
L
lujun 已提交
659
                 num_filters,
660
                 filter_size,
L
lujun 已提交
661 662 663 664 665 666 667 668
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
669 670
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
671 672 673 674 675 676 677
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
678
        self._num_channels = num_channels
L
lujun 已提交
679 680 681 682 683 684
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
685
        self._dtype = dtype
L
lujun 已提交
686

687 688
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
689

690 691
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
692 693 694 695 696 697 698
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
699 700 701 702

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
703 704 705 706 707 708 709 710 711 712 713 714 715 716
        self._helper.append_op(type="conv3d_transpose",
                               inputs={
                                   'Input': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Output': pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn
                               })
L
lujun 已提交
717 718 719 720

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
721 722 723 724 725 726 727
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
L
lujun 已提交
728 729 730 731 732 733 734
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
735
class Pool2D(layers.Layer):
736
    r"""
737

738 739 740 741 742
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
743 744
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

790
    Parameters:
791
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
792
            it must contain two integers, (pool_size_Height, pool_size_Width).
793 794 795 796
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
797
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
798 799 800
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
801
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
802 803 804 805 806 807 808
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
809 810 811 812
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
813 814

    Returns:
815
        None
816 817

    Raises:
818 819 820 821
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
822 823 824 825 826

    Examples:

        .. code-block:: python

L
lujun 已提交
827
          import paddle.fluid as fluid
828 829
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
830 831

          with fluid.dygraph.guard():
832
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
833
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
834 835 836
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
837
             pool2d_res = pool2d(to_variable(data))
838 839 840

    """

M
minqiyang 已提交
841 842 843 844 845 846 847 848
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
849 850 851 852
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

866
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
867

868 869 870 871 872
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

873
        super(Pool2D, self).__init__()
M
minqiyang 已提交
874 875 876 877 878 879 880 881 882 883

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
884
        self._data_format = data_format
M
minqiyang 已提交
885 886 887
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
888
        if _non_static_mode():
889 890 891 892
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
893 894
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
W
wanghuancoder 已提交
895
            return _C_ops.pool2d(input, *attrs)
896

897 898 899 900
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

901 902 903 904 905 906 907 908
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
909
            "use_mkldnn": self._use_mkldnn,
910
            "exclusive": self._exclusive,
911
            "data_format": self._data_format,
912 913 914
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
915 916
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

917 918 919 920
        self._helper.append_op(type=self._l_type,
                               inputs={"X": input},
                               outputs={"Out": pool_out},
                               attrs=attrs)
M
minqiyang 已提交
921
        return pool_out
M
minqiyang 已提交
922 923


S
songyouwei 已提交
924 925
class Linear(layers.Layer):
    """
926
    
S
songyouwei 已提交
927 928 929 930 931 932 933 934
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

935
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
986 987 988 989 990 991 992 993
        self.weight = self.create_parameter(shape=[input_dim, output_dim],
                                            attr=param_attr,
                                            dtype=dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[output_dim],
                                          attr=bias_attr,
                                          dtype=dtype,
                                          is_bias=True)
S
songyouwei 已提交
994

995
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
996

S
songyouwei 已提交
997
    def forward(self, input):
J
Jiabin Yang 已提交
998
        if _non_static_mode():
999
            pre_bias = _varbase_creator(dtype=input.dtype)
W
wanghuancoder 已提交
1000 1001 1002
            _C_ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                          'transpose_Y', False, "alpha", 1, "use_mkldnn",
                          self._use_mkldnn)
1003
            pre_act = dygraph_utils._append_bias_in_dygraph(
1004 1005 1006 1007
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
1008

1009 1010
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
1011 1012 1013 1014

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

1015
        attrs = {
S
songyouwei 已提交
1016 1017 1018
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1019
            "use_mkldnn": self._use_mkldnn,
1020 1021
        }
        inputs = {"X": [input], "Y": [self.weight]}
1022

S
songyouwei 已提交
1023
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1024 1025 1026 1027
        self._helper.append_op(type="matmul",
                               inputs=inputs,
                               outputs={"Out": tmp},
                               attrs=attrs)
1028
        if self.bias is not None:
S
songyouwei 已提交
1029 1030
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [tmp],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={
                                       'axis': len(input.shape) - 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
S
songyouwei 已提交
1041 1042 1043 1044 1045
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1046
class InstanceNorm(layers.Layer):
1047
    r"""
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1078
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1079 1080 1081
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1082 1083
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1084 1085 1086
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1087
             If it is set to False, will not create bias_attr. Default: None.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1122 1123
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1124 1125 1126 1127 1128
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1129 1130 1131 1132 1133 1134 1135
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
1136 1137 1138 1139 1140
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[num_channels],
                                              dtype=self._dtype,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
C
ceci3 已提交
1141 1142 1143
        else:
            self.scale = None
            self.bias = None
1144 1145

    def forward(self, input):
1146 1147 1148 1149 1150
        if in_dygraph_mode():
            out, _, _, = _C_ops.final_state_instance_norm(
                input, self.scale, self.bias, self._epsilon)
            return out
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1151 1152
            out, _, _ = _C_ops.instance_norm(input, self.scale, self.bias,
                                             'epsilon', self._epsilon)
1153 1154 1155 1156 1157 1158 1159
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1160 1161 1162 1163
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

1178 1179 1180 1181
        self._helper.append_op(type="instance_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
1182 1183 1184
        return instance_norm_out


M
minqiyang 已提交
1185
class BatchNorm(layers.Layer):
1186
    r"""
1187

1188 1189 1190 1191 1192
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1193 1194 1195 1196
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1197 1198
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1199
    Calculated as follows:
1200 1201 1202

    ..  math::

1203 1204 1205 1206
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1207

1208 1209
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1210 1211 1212

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1213 1214 1215 1216 1217 1218
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1219

1220 1221
    The normalization function formula is as follows:
 
1222 1223
    ..  math::

1224 1225 1226 1227
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1228

1229 1230 1231
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1232

1233
    Parameters:
1234
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1235
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1236 1237 1238
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1239 1240 1241
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1242 1243 1244
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1245
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1246 1247 1248
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1249 1250 1251 1252 1253 1254
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1255 1256
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1257
        use_global_stats(bool, optional): Whether to use global mean and
1258 1259 1260
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1261 1262 1263 1264
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1265 1266

    Returns:
1267
        None
1268 1269 1270

    Examples:
        .. code-block:: python
L
lujun 已提交
1271 1272

          import paddle.fluid as fluid
1273 1274
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1275

1276
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1277
          with fluid.dygraph.guard():
1278
              x = to_variable(x)
1279
              batch_norm = fluid.BatchNorm(10)
1280
              hidden1 = batch_norm(x)
1281 1282
    """

M
minqiyang 已提交
1283 1284 1285 1286 1287 1288 1289 1290
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1291
                 dtype='float32',
M
minqiyang 已提交
1292 1293 1294 1295
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1296
                 do_model_average_for_mean_and_var=True,
1297 1298
                 use_global_stats=False,
                 trainable_statistics=False):
1299
        super(BatchNorm, self).__init__()
1300
        self._param_attr = param_attr
1301
        self._bias_attr = bias_attr
1302
        self._act = act
1303
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1304 1305 1306

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1307 1308
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1309 1310 1311 1312 1313 1314
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1315 1316 1317 1318
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
1319
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1320

1321 1322 1323 1324
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
1325
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1326

1327 1328 1329 1330 1331 1332 1333
        self._mean = self.create_parameter(attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                           shape=param_shape,
                                           dtype=self._dtype)
1334
        self._mean.stop_gradient = True
M
minqiyang 已提交
1335

1336 1337 1338 1339 1340 1341 1342
        self._variance = self.create_parameter(attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                               shape=param_shape,
                                               dtype=self._dtype)
1343
        self._variance.stop_gradient = True
M
minqiyang 已提交
1344 1345

        self._in_place = in_place
1346
        self._data_layout = data_layout
M
minqiyang 已提交
1347 1348 1349
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1350
        self._fuse_with_relu = False
M
minqiyang 已提交
1351
        self._use_global_stats = use_global_stats
1352
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1353 1354 1355 1356 1357 1358 1359

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1360

J
Jiabin Yang 已提交
1361
        if _non_static_mode():
H
hong 已提交
1362 1363 1364 1365 1366 1367
            if in_dygraph_mode():
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.final_state_batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
1368 1369 1370 1371
                return dygraph_utils._append_activation_in_dygraph(
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)

            elif _in_legacy_dygraph():
H
hong 已提交
1372 1373 1374 1375 1376 1377 1378 1379
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
                batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
1380 1381
                    None, mean_out, variance_out, *attrs)

1382
            return dygraph_utils._append_activation_in_dygraph(
1383
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1384

1385 1386 1387
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1388 1389 1390 1391 1392 1393 1394
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1395 1396
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1397
        }
M
minqiyang 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1407 1408 1409 1410
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1411 1412
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1413

1414 1415
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1416 1417 1418 1419 1420 1421 1422 1423

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1424
        if reserve_space is not None:
1425
            outputs["ReserveSpace"] = [reserve_space]
1426

1427 1428 1429 1430
        self._helper.append_op(type="batch_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
M
minqiyang 已提交
1431

L
lujun 已提交
1432
        # Currently, we don't support inplace in dygraph mode
1433
        return self._helper.append_activation(batch_norm_out, self._act)
1434 1435


1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1515 1516 1517
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1518 1519 1520 1521 1522
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1523 1524
            'is_test':
            not self.training if _non_static_mode() else self._is_test,
1525 1526 1527 1528 1529
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1530
        if _non_static_mode():
1531
            attrs = sum(attrs.items(), ())
W
wanghuancoder 已提交
1532
            out, mask = _C_ops.dropout(input, *attrs)
1533 1534 1535 1536 1537 1538
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1539 1540 1541 1542 1543 1544 1545
        self._helper.append_op(type='dropout',
                               inputs={'X': [input]},
                               outputs={
                                   'Out': [out],
                                   'Mask': [mask]
                               },
                               attrs=attrs)
1546 1547 1548
        return out


1549
class Embedding(layers.Layer):
1550
    r"""
1551 1552 1553 1554
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1555 1556
    **Embedding Layer**

Z
zhongpu 已提交
1557 1558 1559 1560 1561 1562
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1563 1564
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1565

1566
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1567 1568 1569 1570 1571 1572 1573
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1574 1575
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1589

1590
    Parameters:
L
lujun 已提交
1591 1592
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1611
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1612 1613 1614
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1615

Z
zhongpu 已提交
1616 1617
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1618

1619
    Returns:
Z
zhongpu 已提交
1620
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1621 1622

    Examples:
1623

1624 1625
        .. code-block:: python

L
lujun 已提交
1626 1627 1628 1629
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1630
          # example 1
1631 1632
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1633 1634
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1635
              emb = fluid.dygraph.Embedding(
1636 1637 1638
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1639
              static_rlt3 = emb(base.to_variable(inp_word))
1640
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1655 1656
    """

1657 1658 1659 1660 1661 1662 1663
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1664
        super(Embedding, self).__init__()
1665 1666 1667 1668
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1669
            size[0] + padding_idx)
1670 1671 1672

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1673
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1674 1675 1676
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1677 1678 1679 1680
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._size,
                                            dtype=self._dtype,
                                            is_bias=False)
1681 1682

    def forward(self, input):
J
Jiabin Yang 已提交
1683
        if _non_static_mode():
1684 1685 1686 1687 1688 1689
            return _C_ops.lookup_table_v2(self.weight, input, 'is_sparse',
                                          self._is_sparse, 'is_distributed',
                                          self._is_distributed,
                                          'remote_prefetch',
                                          self._remote_prefetch, 'padding_idx',
                                          self._padding_idx)
1690

1691 1692 1693
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1694 1695 1696 1697 1698 1699
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1700

1701
        out = self._helper.create_variable_for_type_inference(self._dtype)
1702 1703 1704 1705 1706 1707 1708
        self._helper.append_op(type='lookup_table_v2',
                               inputs={
                                   'Ids': input,
                                   'W': self.weight
                               },
                               outputs={'Out': out},
                               attrs=attrs)
1709 1710

        return out
M
minqiyang 已提交
1711 1712


1713
class LayerNorm(layers.Layer):
1714
    r"""
1715 1716 1717 1718
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1719 1720 1721
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1722
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1723

1724
    The formula is as follows:
1725

1726
    ..  math::
1727

1728
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1729

1730
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1731

1732
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1733

1734 1735 1736 1737 1738
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1739

1740
    Parameters:
1741 1742 1743 1744
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1745
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1746
            normalization. Default: True.
1747
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1748
            normalization. Default: True.
1749
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1750
            division by zero. Default: 1e-05.
1751
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1752 1753 1754
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1755
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1756
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1757 1758 1759
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1760
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1761
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1762
                  Default: None.
1763 1764
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1765
    Returns:
1766
        None
1767

1768
    Examples:
1769

1770 1771 1772
        .. code-block:: python

          import paddle.fluid as fluid
1773
          from paddle.fluid.dygraph.base import to_variable
1774 1775
          import numpy

1776
          x = numpy.random.random((3, 32, 32)).astype('float32')
1777
          with fluid.dygraph.guard():
1778
              x = to_variable(x)
1779
              layerNorm = fluid.LayerNorm([32, 32])
1780
              ret = layerNorm(x)
1781

1782
    """
1783

1784
    def __init__(self,
1785
                 normalized_shape,
1786 1787 1788 1789 1790
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1791 1792 1793 1794 1795
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1796

1797
        self._normalized_shape = list(normalized_shape)
1798 1799 1800 1801 1802 1803
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1804 1805
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1806
        if self._scale:
1807
            self.weight = self.create_parameter(
1808 1809 1810 1811
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1812 1813
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1814
                logging.warn("param_attr are only available with scale is True")
1815
            self.weight = None
1816

1817 1818
        if self._shift:
            assert self._bias_attr is not False
1819 1820 1821 1822
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              is_bias=True)
1823 1824
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1825
                logging.warn("bias_attr are only available with shift is True")
1826
            self.bias = None
1827 1828

    def forward(self, input):
1829 1830 1831 1832 1833 1834 1835
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
1836 1837 1838 1839 1840
            raise ValueError('Given normalized_shape is ' +
                             str_normalized_shape +
                             ', expected input with shape [*, ' +
                             str_normalized_shape[1:] +
                             ', but got input shape ' + str(input_shape))
1841

J
Jiabin Yang 已提交
1842
        if _non_static_mode():
H
hong 已提交
1843 1844 1845 1846 1847 1848 1849
            if in_dygraph_mode():
                pre_act, _, _, = _C_ops.final_state_layer_norm(
                    input, self.weight, self.bias, self._epsilon,
                    self._begin_norm_axis, False)
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
            else:
1850 1851 1852 1853
                pre_act, _, _ = _C_ops.layer_norm(input, self.weight, self.bias,
                                                  'epsilon', self._epsilon,
                                                  'begin_norm_axis',
                                                  self._begin_norm_axis)
H
hong 已提交
1854 1855
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
1856

1857 1858 1859
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1860
        inputs = dict()
1861
        inputs['X'] = [input]
1862
        if self._scale:
1863
            inputs['Scale'] = [self.weight]
1864
        if self._shift:
1865 1866 1867 1868 1869 1870
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1871 1872 1873 1874 1875 1876 1877 1878
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        self._helper.append_op(type="layer_norm",
                               inputs=inputs,
                               outputs={
                                   "Y": layer_norm_out,
                                   "Mean": mean_out,
                                   "Variance": variance_out,
                               },
                               attrs={
                                   "epsilon": self._epsilon,
                                   "begin_norm_axis": self._begin_norm_axis
                               })
1890

1891
        return self._helper.append_activation(layer_norm_out, act=self._act)
1892 1893


M
minqiyang 已提交
1894 1895 1896
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1897 1898 1899 1900 1901
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1912
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1938
    Parameters:
L
lujun 已提交
1939
        size (int): The input dimension value.
D
DuYao 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1949 1950 1951 1952


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1953 1954 1955 1956
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1957 1958 1959 1960 1961
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1962
            is initialized zero. The default value is None.
L
lujun 已提交
1963
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1964
                             The default value is 'tanh'.
L
lujun 已提交
1965
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1966 1967 1968
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1969

D
DuYao 已提交
1970 1971 1972 1973
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1974

M
minqiyang 已提交
1975
    Returns:
D
DuYao 已提交
1976 1977 1978 1979
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1993
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1994 1995 1996
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1997
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1998 1999 2000
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
2011
        super(GRUUnit, self).__init__()
2012
        self._bias_attr = bias_attr
M
minqiyang 已提交
2013 2014 2015 2016
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2017 2018
            relu=3,
        )
H
Hongyu Liu 已提交
2019 2020
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2021

M
minqiyang 已提交
2022
        self._dtype = dtype
M
minqiyang 已提交
2023 2024
        size = size // 3
        # create weight
2025 2026 2027
        self.weight = self.create_parameter(attr=param_attr,
                                            shape=[size, 3 * size],
                                            dtype=dtype)
M
minqiyang 已提交
2028 2029

        # create bias
M
minqiyang 已提交
2030
        bias_size = [1, 3 * size]
2031
        self._bias_size = bias_size
2032 2033 2034 2035
        self.bias = self.create_parameter(attr=bias_attr,
                                          shape=bias_size,
                                          dtype=dtype,
                                          is_bias=True)
M
minqiyang 已提交
2036

M
minqiyang 已提交
2037
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2038
        if _non_static_mode():
W
wanghuancoder 已提交
2039
            gate, reset_hidden_pre, updated_hidden = _C_ops.gru_unit(
2040 2041 2042 2043
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2044 2045 2046 2047
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2048 2049 2050 2051 2052
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2053
        if self.bias is not None:
2054
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2055 2056 2057 2058 2059
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        self._helper.append_op(type='gru_unit',
                               inputs=inputs,
                               outputs={
                                   'Gate': gate,
                                   'ResetHiddenPrev': reset_hidden_pre,
                                   'Hidden': updated_hidden,
                               },
                               attrs={
                                   'activation': self.activation,
                                   'gate_activation': self.gate_activation,
                               })
M
minqiyang 已提交
2071 2072

        return updated_hidden, reset_hidden_pre, gate
2073 2074 2075 2076


class NCE(layers.Layer):
    """
2077 2078 2079 2080 2081
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2082
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2083

2084
    Parameters:
2085 2086
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2087
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2088 2089 2090
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2091
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2092 2093 2094 2095
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2096
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2097
        sampler (str, optional): The sampler used to sample class from negative classes.
2098 2099
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2100
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2101
                       It is used when sampler is set to 'custom_dist'.
2102
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2103
                       Default: None.
2104 2105
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2106
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2107

2108 2109
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2110

2111 2112
        **bias** (Parameter or None): the learnable bias of this layer.
    
2113
    Returns:
2114
        None
2115 2116 2117 2118

    Examples:
        .. code-block:: python

2119 2120 2121
            import numpy as np
            import paddle.fluid as fluid

2122
            window_size = 5
2123 2124
            dict_size = 20
            label_word = int(window_size // 2) + 1
2125
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2147
                nce = fluid.NCE(
2148
                             num_total_classes=dict_size,
2149
                             dim=embs3.shape[1],
2150 2151 2152 2153 2154 2155 2156
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2157 2158
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2159 2160 2161 2162 2163

    """

    def __init__(self,
                 num_total_classes,
2164
                 dim,
2165
                 sample_weight=None,
2166 2167 2168 2169 2170 2171
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2172 2173 2174
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2175 2176 2177
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2178
        self._dtype = dtype
2179
        self._inputs = dict()
2180
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2268
        self.weight = self.create_parameter(
2269 2270 2271
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2272
            dtype=self._dtype)
2273
        if self._bias_attr:
2274
            self.bias = self.create_parameter(
2275 2276 2277
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2278
                dtype=self._dtype)
2279 2280
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2281

2282
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2283
        if _non_static_mode():
W
Weilong Wu 已提交
2284 2285 2286 2287 2288
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
2289 2290 2291 2292 2293 2294
            cost, _, _ = _C_ops.nce(input, label, self.weight, self.bias,
                                    self._inputs['SampleWeight'],
                                    self._inputs['CustomDistProbs'],
                                    self._inputs['CustomDistAlias'],
                                    self._inputs['CustomDistAliasProbs'],
                                    *attrs)
W
Weilong Wu 已提交
2295 2296
            return cost / (self._num_neg_samples + 1)

2297 2298 2299 2300
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

2315 2316 2317 2318 2319 2320 2321 2322
        self._helper.append_op(type='nce',
                               inputs=self._inputs,
                               outputs={
                                   'Cost': cost,
                                   'SampleLogits': sample_logits,
                                   'SampleLabels': sample_labels
                               },
                               attrs=self._attrs)
2323 2324 2325 2326
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2327
    r"""
2328 2329 2330 2331
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2332 2333 2334 2335 2336
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2337
    Parameters:
L
lujun 已提交
2338
        mode (str): The mode for weight sharing. It supports all, channel
2339 2340 2341
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2342 2343 2344
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2345
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2346 2347
          This argument is required when mode is "element".
          Default: None.
2348 2349
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2350
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2351

2352 2353 2354
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2355
    Returns:
2356
        None
2357 2358 2359 2360 2361

    Examples:

        .. code-block:: python

L
lujun 已提交
2362
          import paddle.fluid as fluid
2363
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2364 2365 2366 2367
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2368
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2380
                 input_shape=inp_np.shape,
L
lujun 已提交
2381
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2382
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2383

2384 2385
    """

S
songyouwei 已提交
2386 2387 2388 2389 2390
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2391
                 dtype='float32'):
2392 2393
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2394 2395
        self._mode = mode
        self._param_attr = param_attr
2396
        self._dtype = dtype
S
songyouwei 已提交
2397 2398 2399 2400 2401 2402
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2403
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2404
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2405
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2406 2407
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2408
        elif mode == 'element':
2409 2410 2411 2412
            assert isinstance(
                input_shape,
                (list, tuple
                 )), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2413 2414 2415
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2416 2417 2418 2419 2420
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._alpha_shape,
                                            dtype='float32',
                                            is_bias=False,
                                            default_initializer=Constant(1.0))
2421 2422

    def forward(self, input):
2423
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2424
        out = self._helper.create_variable_for_type_inference(self._dtype)
2425 2426 2427 2428 2429 2430 2431
        self._helper.append_op(type="prelu",
                               inputs={
                                   "X": input,
                                   'Alpha': self.weight
                               },
                               attrs={"mode": self._mode},
                               outputs={"Out": out})
2432 2433 2434 2435
        return out


class BilinearTensorProduct(layers.Layer):
2436
    r"""
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2451
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2452

2453
    Parameters:
2454 2455 2456 2457 2458
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2459 2460 2461 2462
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2463
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2464
           If it is set to None, the bias is initialized zero. The default value is None.
2465
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2466

D
DuYao 已提交
2467 2468 2469 2470
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2471

2472
    Returns:
W
wanghuancoder 已提交
2473
       Tensor: A 2-D Tensor of shape [batch_size, size].
2474 2475 2476 2477

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2487

2488 2489 2490
    """

    def __init__(self,
2491 2492 2493
                 input1_dim,
                 input2_dim,
                 output_dim,
2494 2495 2496
                 name=None,
                 act=None,
                 param_attr=None,
2497 2498 2499
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2500 2501 2502 2503
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2504 2505 2506
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2507
        self._inputs = dict()
2508
        self._dtype = dtype
2509

2510
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2511 2512 2513 2514
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
2515
        bias_size = [1, self._output_dim]
2516 2517 2518 2519 2520 2521 2522 2523
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=bias_size,
                                          dtype=self._dtype,
                                          is_bias=True)

    @deprecated(since="2.0.0",
                update_to="paddle.nn.Bilinear",
                reason="New name and new args in Bilinear, easier to use.")
2524
    def forward(self, x, y):
2525 2526 2527 2528
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2529
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2530
        if self.bias is not None:
2531
            self._inputs["Bias"] = self.bias
2532
        if self._name is not None:
2533 2534 2535 2536
            out = self._helper.create_variable(name=".".join(
                [self.full_name(), self._name]),
                                               dtype=self._dtype,
                                               persistable=False)
2537
        else:
2538 2539 2540 2541 2542
            out = self._helper.create_variable(dtype=self._dtype,
                                               persistable=False)
        self._helper.append_op(type="bilinear_tensor_product",
                               inputs=self._inputs,
                               outputs={"Out": out})
2543 2544

        # add activation
2545
        return self._helper.append_activation(out, act=self._act)
2546 2547 2548


class Conv2DTranspose(layers.Layer):
2549
    r"""
2550 2551
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2552
    The convolution2D transpose layer calculates the output based on the input,
2553 2554 2555
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2556 2557
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2558 2559
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2560 2561 2562
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2563 2564
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2565 2566 2567 2568 2569 2570 2571 2572 2573

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2574 2575
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2576
    * :math:`\\ast`: Convolution operation.
2577
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2602
    Parameters:
2603
        num_channels(int): The number of channels in the input image.
2604
        num_filters(int): The number of the filter. It is as same as the output
2605
            feature map.
2606 2607 2608
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2609
        output_size(int or tuple, optional): The output image size. If output size is a
2610 2611 2612
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2613
            should follow the formula above. Default: None.
2614
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2615
            contain two integers, (padding_H, padding_W). Otherwise, the
2616 2617
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2618
            contain two integers, (stride_H, stride_W). Otherwise, the
2619 2620
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2621
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2622
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2623
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2624 2625 2626 2627
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2628 2629
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2630 2631 2632
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2633
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2634 2635 2636 2637
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2638
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2639
            library is installed. Default: True.
2640
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2641
            Default: None.
2642
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2643

2644 2645
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2646

2647
        **bias** (Parameter or None): the learnable bias of this layer.
2648

2649 2650
    Returns:
        None
2651 2652 2653 2654

    Examples:
       .. code-block:: python

2655
          import paddle.fluid as fluid
2656
          import numpy as np
2657 2658

          with fluid.dygraph.guard():
2659
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2660
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2661
                    num_channels=32, num_filters=2, filter_size=3)
2662 2663
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2664 2665 2666
    """

    def __init__(self,
2667
                 num_channels,
2668
                 num_filters,
2669
                 filter_size,
2670 2671 2672 2673 2674 2675 2676 2677
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2678 2679 2680
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2681 2682 2683
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2684
        self._act = act
2685
        self._groups = groups
2686
        self._num_channels = num_channels
2687 2688 2689 2690 2691 2692 2693
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2694
        self._dtype = dtype
2695

2696 2697 2698
        if (self._num_channels == self._groups
                and self._num_filters == self._num_channels
                and not self._use_cudnn):
2699
            self._op_type = 'depthwise_conv2d_transpose'
2700 2701
        else:
            self._op_type = 'conv2d_transpose'
2702 2703 2704 2705 2706

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2707 2708
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2720
        filter_shape = [self._num_channels, self._num_filters // self._groups
2721 2722
                        ] + self._filter_size

2723 2724 2725
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
2726

2727 2728 2729 2730
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2731

2732
    def forward(self, input):
J
Jiabin Yang 已提交
2733
        if _non_static_mode():
W
wanghuancoder 已提交
2734
            op = getattr(_C_ops, self._op_type)
2735 2736 2737 2738 2739
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
2740 2741 2742 2743
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=self._act)
2744

2745 2746 2747 2748
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2759 2760
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
2761 2762 2763 2764
        self._helper.append_op(type=self._op_type,
                               inputs=inputs,
                               outputs={'Output': pre_bias},
                               attrs=attrs)
2765

2766
        if self.bias is not None:
2767 2768
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2769 2770 2771 2772 2773 2774 2775
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2776 2777 2778 2779
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2780 2781 2782 2783 2784 2785 2786 2787 2788
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2789
    Parameters:
L
lujun 已提交
2790
        name_scope(str): The name of this class.
2791
        num_filters (int): number of filters.
L
lujun 已提交
2792 2793 2794
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2807 2808 2809 2810
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2824
        assert not _non_static_mode(
2825
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2826 2827 2828 2829 2830 2831 2832
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2833
        self._act = act
2834

2835
    def _build_once(self, input):
2836 2837
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2838 2839 2840
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype)
2841

2842 2843 2844 2845
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2846

2847 2848
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
        self._helper.append_op(type='sequence_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight],
                               },
                               outputs={"Out": pre_bias},
                               attrs={
                                   'contextStride': self._filter_stride,
                                   'contextStart': -int(self._filter_size // 2),
                                   'contextLength': self._filter_size
                               })
2860

2861
        if self.bias is not None:
2862 2863
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2864 2865 2866 2867 2868 2869 2870
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2871 2872 2873 2874
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2875 2876 2877


class RowConv(layers.Layer):
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2896
    Parameters:
L
lujun 已提交
2897
        name_scope(str): The name of this class.
2898 2899 2900
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2901 2902
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2903

2904 2905 2906
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2907
    Returns:
L
lujun 已提交
2908 2909
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2925 2926 2927 2928 2929
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2930
        assert not _non_static_mode(
2931
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2932 2933 2934 2935 2936
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2937
    def _build_once(self, input):
L
lujun 已提交
2938 2939
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2940 2941 2942 2943
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
2944 2945 2946

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2947 2948 2949 2950 2951 2952
        self._helper.append_op(type='row_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Out': [out]})
L
lujun 已提交
2953 2954 2955 2956 2957
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2958 2959 2960 2961
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2962 2963 2964 2965 2966 2967
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2968
        channels(int): The number of channels of input.
2969 2970 2971 2972 2973 2974 2975 2976 2977
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2978
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2992
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2993
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2994 2995 2996 2997

    """

    def __init__(self,
2998
                 channels,
L
lujun 已提交
2999 3000 3001 3002 3003
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
3004 3005 3006
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
3007 3008 3009
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3010
        self._channels = channels
L
lujun 已提交
3011 3012
        self._groups = groups
        self._act = act
3013
        self._dtype = dtype
L
lujun 已提交
3014 3015 3016
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3017
        param_shape = [self._channels]
L
lujun 已提交
3018

3019 3020 3021 3022
        self.weight = self.create_parameter(attr=self._param_attr or False,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
3023

3024 3025 3026 3027
        self.bias = self.create_parameter(attr=self._bias_attr or False,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
3028 3029

    def forward(self, input):
3030 3031 3032 3033 3034 3035
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)

        if _non_static_mode():
3036
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3037 3038
            out, _, _ = _C_ops.group_norm(input, self.weight, self.bias,
                                          mean_out, variance_out, *attrs)
3039 3040

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3051

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
            self._helper.append_op(type="group_norm",
                                   inputs=inputs,
                                   outputs={
                                       "Y": group_norm_out,
                                       "Mean": mean_out,
                                       "Variance": variance_out,
                                   },
                                   attrs={
                                       "epsilon": self._epsilon,
                                       "groups": self._groups
                                   })
J
Jiabin Yang 已提交
3063 3064

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3065 3066 3067


class SpectralNorm(layers.Layer):
3068
    r"""
3069 3070
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3081
    :attr:`power_iters` should be a positive integer, do following
3082 3083 3084 3085
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3086
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3087

3088
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3089 3090 3091 3092 3093 3094 3095 3096

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3097
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3098 3099 3100 3101


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3102
    Parameters:
3103
        weight_shape(list or tuple): The shape of weight parameter.
3104 3105 3106 3107
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3108
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3109 3110

    Returns:
3111
        None
3112 3113 3114 3115

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3116 3117
            import paddle
            x = paddle.rand((2,8,32,32))
3118

C
Chen Long 已提交
3119 3120 3121 3122
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3123 3124 3125

    """

3126 3127 3128 3129 3130 3131 3132
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3133 3134 3135
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3136
        self._dtype = dtype
L
lujun 已提交
3137

3138
        self._weight_shape = list(weight_shape)
3139 3140 3141 3142 3143 3144
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3145 3146
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3147

3148 3149 3150 3151 3152
        self.weight_u = self.create_parameter(attr=ParamAttr(),
                                              shape=[h],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3153
        self.weight_u.stop_gradient = True
L
lujun 已提交
3154

3155 3156 3157 3158 3159
        self.weight_v = self.create_parameter(attr=ParamAttr(),
                                              shape=[w],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3160
        self.weight_v.stop_gradient = True
L
lujun 已提交
3161 3162

    def forward(self, weight):
3163 3164
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3165
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3166
        out = self._helper.create_variable_for_type_inference(self._dtype)
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
        self._helper.append_op(type="spectral_norm",
                               inputs=inputs,
                               outputs={
                                   "Out": out,
                               },
                               attrs={
                                   "dim": self._dim,
                                   "power_iters": self._power_iters,
                                   "eps": self._eps,
                               })
L
lujun 已提交
3177 3178 3179 3180 3181

        return out


class TreeConv(layers.Layer):
3182
    """
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3193
        feature_size(int): last dimension of nodes_vector.
3194 3195 3196 3197 3198 3199 3200
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3201
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3202

3203 3204
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3205

3206
        **bias** (Parameter or None): the learnable bias of this layer.
3207

3208 3209
    Returns:
        None
L
lujun 已提交
3210

3211
    Examples:
L
lujun 已提交
3212

3213
        .. code-block:: python
3214

3215 3216
          import paddle.fluid as fluid
          import numpy
3217

3218 3219 3220 3221
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3222
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3223
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3224 3225
    """

L
lujun 已提交
3226
    def __init__(self,
3227
                 feature_size,
L
lujun 已提交
3228 3229 3230 3231 3232 3233
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3234 3235 3236
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3237
        self._name = name
3238
        self._feature_size = feature_size
L
lujun 已提交
3239 3240 3241 3242 3243 3244
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3245 3246
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3247
        if self._bias_attr:
3248 3249 3250 3251 3252 3253 3254 3255
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[self._num_filters],
                                              dtype=self._dtype,
                                              is_bias=True)
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=w_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
3256 3257

    def forward(self, nodes_vector, edge_set):
3258 3259
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3260
        if self._name:
3261 3262 3263
            out = self.create_variable(name=self._name,
                                       dtype=self._dtype,
                                       persistable=False)
L
lujun 已提交
3264 3265 3266
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
        self._helper.append_op(type='tree_conv',
                               inputs={
                                   'NodesVector': nodes_vector,
                                   'EdgeSet': edge_set,
                                   'Filter': self.weight
                               },
                               outputs={
                                   'Out': out,
                               },
                               attrs={'max_depth': self._max_depth})
L
lujun 已提交
3277 3278 3279
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3280 3281 3282 3283 3284 3285 3286
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [out],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={'axis': 1})
L
lujun 已提交
3287 3288 3289
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3313
          inp_np = paddle.to_tensor(inp_np)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3325 3326 3327
        out = paddle.tensor.manipulation.flatten(input,
                                                 start_axis=self.start_axis,
                                                 stop_axis=self.stop_axis)
3328
        return out