nn.py 136.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode, _in_legacy_dygraph
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
W
wanghuancoder 已提交
36
from paddle import _C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199
        if (self._num_channels == self._groups and
200 201
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207 208 209
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
            if (self._num_channels == self._groups and
                    self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236
        self.bias = self.create_parameter(
237 238
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
239 240
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
241 242

    def forward(self, input):
H
hong 已提交
243 244 245 246 247 248 249 250 251 252 253 254
        if in_dygraph_mode() and self._l_type == "conv2d":
            pre_bias = _C_ops.final_state_conv2d(
                input, self.weight, self._stride, self._padding, "EXPLICIT",
                self._groups if self._groups else 1, self._dilation, "NCHW",
                False, -1, False)
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)

J
Jiabin Yang 已提交
255 256
        if _non_static_mode() and (self._l_type == 'conv2d' or
                                   self._l_type == 'depthwise_conv2d'):
257 258
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
259 260
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
W
wanghuancoder 已提交
261
            out = _C_ops.conv2d(input, self.weight, *attrs)
262 263
            pre_bias = out

264 265 266 267
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
268 269
        inputs = {
            'Input': [input],
270
            'Filter': [self.weight],
271 272 273 274 275 276 277
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
278
            'use_mkldnn': self._use_mkldnn,
279
        }
280 281 282

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
283 284 285
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
286 287 288 289
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
290
                'Filter': self.weight,
M
minqiyang 已提交
291
            },
M
minqiyang 已提交
292
            outputs={"Output": pre_bias},
293
            attrs=attrs)
M
minqiyang 已提交
294

295
        if self.bias is not None:
296 297 298 299 300
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
301
                        'Y': [self.bias]},
302
                outputs={'Out': [pre_act]},
303 304
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
305 306
        else:
            pre_act = pre_bias
M
minqiyang 已提交
307

L
lujun 已提交
308
        # Currently, we don't support inplace in dygraph mode
309
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
310 311


L
lujun 已提交
312
class Conv3D(layers.Layer):
313
    r"""
314 315 316 317
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
318 319
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
320 321 322 323 324 325 326 327 328 329 330 331 332 333
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
334
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

360
    Parameters:
361
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
362
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
363
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
364
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
365 366 367
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
368
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
369 370
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
371
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
372 373
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
374
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
375
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
376
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
377 378 379
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
380 381
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
382 383 384
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
385 386
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
387 388 389
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
390 391 392 393 394
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
395
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
396

D
DuYao 已提交
397 398 399 400
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
401

402
    Returns:
D
DuYao 已提交
403
        None.
404 405 406 407 408 409 410 411

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

412 413 414 415 416 417
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
418
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
419 420
              ret = conv3d(fluid.dygraph.base.to_variable(data))

421 422
    """

L
lujun 已提交
423
    def __init__(self,
424
                 num_channels,
L
lujun 已提交
425 426 427 428 429 430 431 432 433
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
434 435
                 act=None,
                 dtype='float32'):
L
lujun 已提交
436
        assert param_attr is not False, "param_attr should not be False here."
437 438
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
439 440 441
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
442
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
443 444
        self._act = act
        self._use_cudnn = use_cudnn
445 446 447 448
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
449
        self._dtype = dtype
450 451

        if self._groups is None:
452
            num_filter_channels = self._num_channels
L
lujun 已提交
453
        else:
454
            if self._num_channels % self._groups != 0:
L
lujun 已提交
455
                raise ValueError("num_channels must be divisible by groups.")
456
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
457

458 459
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
460 461 462

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
463
                2] * self._num_channels
L
lujun 已提交
464 465 466
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

467
        self.weight = self.create_parameter(
468
            attr=self._param_attr,
L
lujun 已提交
469 470 471 472
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

473
        self.bias = self.create_parameter(
474 475
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
476 477 478 479 480 481 482 483
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
484
            type='conv3d',
L
lujun 已提交
485 486
            inputs={
                'Input': input,
487
                'Filter': self.weight,
L
lujun 已提交
488 489 490 491 492 493 494 495 496 497 498
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

499
        if self.bias is not None:
500 501 502 503 504
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
505
                        'Y': [self.bias]},
506 507 508 509
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
510 511 512 513 514

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
515
    r"""
L
lujun 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
580

581
    Parameters:
582
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
583 584
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
585
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
586
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
587
            Otherwise, the filter will be a square.
D
DuYao 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
603
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
604
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
605
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
606 607 608 609
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
610 611
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
612 613
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
614 615
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
616 617 618
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
619 620 621 622 623 624 625
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
626

D
DuYao 已提交
627 628 629 630
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
631

L
lujun 已提交
632
    Returns:
D
DuYao 已提交
633
        None.
L
lujun 已提交
634 635 636 637 638 639 640 641

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

642 643 644 645 646 647
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
648
                    num_channels=3,
649 650 651 652 653
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
654 655
    """

L
lujun 已提交
656
    def __init__(self,
657
                 num_channels,
L
lujun 已提交
658
                 num_filters,
659
                 filter_size,
L
lujun 已提交
660 661 662 663 664 665 666 667
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
668 669
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
670 671 672 673 674 675 676
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
677
        self._num_channels = num_channels
L
lujun 已提交
678 679 680 681 682 683
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
684
        self._dtype = dtype
L
lujun 已提交
685

686 687
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
688

689 690
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
691
        self.weight = self.create_parameter(
L
lujun 已提交
692
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
693 694 695 696 697
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
698 699 700 701 702 703 704

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
705
                    'Filter': [self.weight]},
L
lujun 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
721
                        'Y': [self.bias]},
L
lujun 已提交
722 723 724 725 726 727 728 729 730
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
731
class Pool2D(layers.Layer):
732
    r"""
733

734 735 736 737 738
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
739 740
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

786
    Parameters:
787
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
788
            it must contain two integers, (pool_size_Height, pool_size_Width).
789 790 791 792
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
793
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
794 795 796
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
797
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
798 799 800 801 802 803 804
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
805 806 807 808
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
809 810

    Returns:
811
        None
812 813

    Raises:
814 815 816 817
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
818 819 820 821 822

    Examples:

        .. code-block:: python

L
lujun 已提交
823
          import paddle.fluid as fluid
824 825
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
826 827

          with fluid.dygraph.guard():
828
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
829
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
830 831 832
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
833
             pool2d_res = pool2d(to_variable(data))
834 835 836

    """

M
minqiyang 已提交
837 838 839 840 841 842 843 844
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
845 846 847 848
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

862
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
863

864 865 866 867 868
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

869
        super(Pool2D, self).__init__()
M
minqiyang 已提交
870 871 872 873 874 875 876 877 878 879

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
880
        self._data_format = data_format
M
minqiyang 已提交
881 882 883
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
884
        if _non_static_mode():
885 886 887 888
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
889 890
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
W
wanghuancoder 已提交
891
            return _C_ops.pool2d(input, *attrs)
892

893 894 895 896
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

897 898 899 900 901 902 903 904
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
905
            "use_mkldnn": self._use_mkldnn,
906
            "exclusive": self._exclusive,
907
            "data_format": self._data_format,
908 909 910
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
911 912
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
913 914 915
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
916
            outputs={"Out": pool_out},
917
            attrs=attrs)
M
minqiyang 已提交
918
        return pool_out
M
minqiyang 已提交
919 920


S
songyouwei 已提交
921 922
class Linear(layers.Layer):
    """
923
    
S
songyouwei 已提交
924 925 926 927 928 929 930 931
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

932
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

991
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
992

S
songyouwei 已提交
993
    def forward(self, input):
J
Jiabin Yang 已提交
994
        if _non_static_mode():
995
            pre_bias = _varbase_creator(dtype=input.dtype)
W
wanghuancoder 已提交
996 997 998
            _C_ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                          'transpose_Y', False, "alpha", 1, "use_mkldnn",
                          self._use_mkldnn)
999
            pre_act = dygraph_utils._append_bias_in_dygraph(
1000 1001 1002 1003
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
1004

1005 1006
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
1007 1008 1009 1010

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

1011
        attrs = {
S
songyouwei 已提交
1012 1013 1014
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1015
            "use_mkldnn": self._use_mkldnn,
1016 1017
        }
        inputs = {"X": [input], "Y": [self.weight]}
1018

S
songyouwei 已提交
1019 1020
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
1021
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
1022
        if self.bias is not None:
S
songyouwei 已提交
1023 1024 1025 1026 1027 1028 1029
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1030 1031 1032 1033
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1034 1035 1036 1037 1038
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1039
class InstanceNorm(layers.Layer):
1040
    r"""
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1071
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1072 1073 1074
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1075 1076
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1077 1078 1079
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1080
             If it is set to False, will not create bias_attr. Default: None.
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1115 1116
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1117 1118 1119 1120 1121
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1138 1139

    def forward(self, input):
J
Jiabin Yang 已提交
1140
        if _non_static_mode():
W
wanghuancoder 已提交
1141 1142
            out, _, _ = _C_ops.instance_norm(input, self.scale, self.bias,
                                             'epsilon', self._epsilon)
1143 1144 1145 1146 1147 1148 1149
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1150 1151 1152 1153
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1173
class BatchNorm(layers.Layer):
1174
    r"""
1175

1176 1177 1178 1179 1180
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1181 1182 1183 1184
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1185 1186
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1187
    Calculated as follows:
1188 1189 1190

    ..  math::

1191 1192 1193 1194
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1195

1196 1197
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1198 1199 1200

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1201 1202 1203 1204 1205 1206
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1207

1208 1209
    The normalization function formula is as follows:
 
1210 1211
    ..  math::

1212 1213 1214 1215
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1216

1217 1218 1219
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1220

1221
    Parameters:
1222
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1223
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1224 1225 1226
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1227 1228 1229
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1230 1231 1232
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1233
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1234 1235 1236
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1237 1238 1239 1240 1241 1242
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1243 1244
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1245
        use_global_stats(bool, optional): Whether to use global mean and
1246 1247 1248
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1249 1250 1251 1252
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1253 1254

    Returns:
1255
        None
1256 1257 1258

    Examples:
        .. code-block:: python
L
lujun 已提交
1259 1260

          import paddle.fluid as fluid
1261 1262
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1263

1264
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1265
          with fluid.dygraph.guard():
1266
              x = to_variable(x)
1267
              batch_norm = fluid.BatchNorm(10)
1268
              hidden1 = batch_norm(x)
1269 1270
    """

M
minqiyang 已提交
1271 1272 1273 1274 1275 1276 1277 1278
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1279
                 dtype='float32',
M
minqiyang 已提交
1280 1281 1282 1283
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1284
                 do_model_average_for_mean_and_var=True,
1285 1286
                 use_global_stats=False,
                 trainable_statistics=False):
1287
        super(BatchNorm, self).__init__()
1288
        self._param_attr = param_attr
1289
        self._bias_attr = bias_attr
1290
        self._act = act
1291
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1292 1293 1294

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1295 1296
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1297 1298 1299 1300 1301 1302
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1303
        self.weight = self.create_parameter(
1304
            attr=self._param_attr,
M
minqiyang 已提交
1305 1306 1307
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1308
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1309

1310
        self.bias = self.create_parameter(
1311
            attr=self._bias_attr,
M
minqiyang 已提交
1312 1313 1314
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1315
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1316

1317
        self._mean = self.create_parameter(
M
minqiyang 已提交
1318 1319 1320 1321 1322 1323 1324
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1325
        self._mean.stop_gradient = True
M
minqiyang 已提交
1326

1327
        self._variance = self.create_parameter(
M
minqiyang 已提交
1328 1329 1330 1331 1332 1333 1334
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1335
        self._variance.stop_gradient = True
M
minqiyang 已提交
1336 1337

        self._in_place = in_place
1338
        self._data_layout = data_layout
M
minqiyang 已提交
1339 1340 1341
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1342
        self._fuse_with_relu = False
M
minqiyang 已提交
1343
        self._use_global_stats = use_global_stats
1344
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1345 1346 1347 1348 1349 1350 1351

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1352

J
Jiabin Yang 已提交
1353
        if _non_static_mode():
H
hong 已提交
1354 1355 1356 1357 1358 1359
            if in_dygraph_mode():
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.final_state_batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
1360 1361 1362 1363
                return dygraph_utils._append_activation_in_dygraph(
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)

            elif _in_legacy_dygraph():
H
hong 已提交
1364 1365 1366 1367 1368 1369 1370 1371
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
                batch_norm_out, _, _, _, _, _ = _C_ops.batch_norm(
                    input, self.weight, self.bias, self._mean, self._variance,
1372 1373
                    None, mean_out, variance_out, *attrs)

1374
            return dygraph_utils._append_activation_in_dygraph(
1375
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1376

1377 1378 1379
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1380 1381 1382 1383 1384 1385 1386
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1387 1388
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1389
        }
M
minqiyang 已提交
1390

1391 1392 1393 1394 1395 1396 1397 1398
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1399 1400 1401 1402
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1403 1404
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1405

1406 1407
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1408 1409 1410 1411 1412 1413 1414 1415

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1416
        if reserve_space is not None:
1417
            outputs["ReserveSpace"] = [reserve_space]
1418

M
minqiyang 已提交
1419
        self._helper.append_op(
1420
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1421

L
lujun 已提交
1422
        # Currently, we don't support inplace in dygraph mode
1423
        return self._helper.append_activation(batch_norm_out, self._act)
1424 1425


1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1505 1506 1507
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1508 1509 1510 1511 1512 1513
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
J
Jiabin Yang 已提交
1514
            if _non_static_mode() else self._is_test,
1515 1516 1517 1518 1519
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1520
        if _non_static_mode():
1521
            attrs = sum(attrs.items(), ())
W
wanghuancoder 已提交
1522
            out, mask = _C_ops.dropout(input, *attrs)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1538
class Embedding(layers.Layer):
1539
    r"""
1540 1541 1542 1543
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1544 1545
    **Embedding Layer**

Z
zhongpu 已提交
1546 1547 1548 1549 1550 1551
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1552 1553
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1554

1555
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1556 1557 1558 1559 1560 1561 1562
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1563 1564
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1578

1579
    Parameters:
L
lujun 已提交
1580 1581
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1600
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1601 1602 1603
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1604

Z
zhongpu 已提交
1605 1606
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1607

1608
    Returns:
Z
zhongpu 已提交
1609
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1610 1611

    Examples:
1612

1613 1614
        .. code-block:: python

L
lujun 已提交
1615 1616 1617 1618
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1619
          # example 1
1620 1621
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1622 1623
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1624
              emb = fluid.dygraph.Embedding(
1625 1626 1627
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1628
              static_rlt3 = emb(base.to_variable(inp_word))
1629
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1644 1645
    """

1646 1647 1648 1649 1650 1651 1652
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1653
        super(Embedding, self).__init__()
1654 1655 1656 1657
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1658
            size[0] + padding_idx)
1659 1660 1661

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1662
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1663 1664 1665
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1666
        self.weight = self.create_parameter(
1667 1668 1669 1670 1671 1672
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
J
Jiabin Yang 已提交
1673
        if _non_static_mode():
W
wanghuancoder 已提交
1674
            return _C_ops.lookup_table_v2(
1675 1676 1677 1678
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1679 1680 1681
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1682 1683 1684 1685 1686 1687
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1688

1689 1690
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1691
            type='lookup_table_v2',
1692
            inputs={'Ids': input,
1693
                    'W': self.weight},
1694
            outputs={'Out': out},
1695
            attrs=attrs)
1696 1697

        return out
M
minqiyang 已提交
1698 1699


1700
class LayerNorm(layers.Layer):
1701
    r"""
1702 1703 1704 1705
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1706 1707 1708
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1709
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1710

1711
    The formula is as follows:
1712

1713
    ..  math::
1714

1715
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1716

1717
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1718

1719
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1720

1721 1722 1723 1724 1725
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1726

1727
    Parameters:
1728 1729 1730 1731
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1732
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1733
            normalization. Default: True.
1734
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1735
            normalization. Default: True.
1736
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1737
            division by zero. Default: 1e-05.
1738
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1739 1740 1741
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1742
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1743
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1744 1745 1746
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1747
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1748
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1749
                  Default: None.
1750 1751
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1752
    Returns:
1753
        None
1754

1755
    Examples:
1756

1757 1758 1759
        .. code-block:: python

          import paddle.fluid as fluid
1760
          from paddle.fluid.dygraph.base import to_variable
1761 1762
          import numpy

1763
          x = numpy.random.random((3, 32, 32)).astype('float32')
1764
          with fluid.dygraph.guard():
1765
              x = to_variable(x)
1766
              layerNorm = fluid.LayerNorm([32, 32])
1767
              ret = layerNorm(x)
1768

1769
    """
1770

1771
    def __init__(self,
1772
                 normalized_shape,
1773 1774 1775 1776 1777
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1778 1779 1780 1781 1782
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1783

1784
        self._normalized_shape = list(normalized_shape)
1785 1786 1787 1788 1789 1790
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1791 1792
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1793
        if self._scale:
1794
            self.weight = self.create_parameter(
1795 1796 1797 1798
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1799 1800
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1801
                logging.warn("param_attr are only available with scale is True")
1802
            self.weight = None
1803

1804 1805
        if self._shift:
            assert self._bias_attr is not False
1806
            self.bias = self.create_parameter(
1807 1808 1809 1810
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1811 1812
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1813
                logging.warn("bias_attr are only available with shift is True")
1814
            self.bias = None
1815 1816

    def forward(self, input):
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1828

J
Jiabin Yang 已提交
1829
        if _non_static_mode():
W
wanghuancoder 已提交
1830
            pre_act, _, _ = _C_ops.layer_norm(
1831 1832 1833 1834 1835
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1836 1837 1838
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1839
        inputs = dict()
1840
        inputs['X'] = [input]
1841
        if self._scale:
1842
            inputs['Scale'] = [self.weight]
1843
        if self._shift:
1844 1845 1846 1847 1848 1849
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1871
        return self._helper.append_activation(layer_norm_out, act=self._act)
1872 1873


M
minqiyang 已提交
1874 1875 1876
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1877 1878 1879 1880 1881
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1892
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1918
    Parameters:
L
lujun 已提交
1919
        size (int): The input dimension value.
D
DuYao 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1929 1930 1931 1932


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1933 1934 1935 1936
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1937 1938 1939 1940 1941
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1942
            is initialized zero. The default value is None.
L
lujun 已提交
1943
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1944
                             The default value is 'tanh'.
L
lujun 已提交
1945
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1946 1947 1948
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1949

D
DuYao 已提交
1950 1951 1952 1953
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1954

M
minqiyang 已提交
1955
    Returns:
D
DuYao 已提交
1956 1957 1958 1959
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1973
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1974 1975 1976
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1977
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1978 1979 1980
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1991
        super(GRUUnit, self).__init__()
1992
        self._bias_attr = bias_attr
M
minqiyang 已提交
1993 1994 1995 1996 1997
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1998 1999
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2000

M
minqiyang 已提交
2001
        self._dtype = dtype
M
minqiyang 已提交
2002 2003
        size = size // 3
        # create weight
2004
        self.weight = self.create_parameter(
M
minqiyang 已提交
2005
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
2006 2007

        # create bias
M
minqiyang 已提交
2008
        bias_size = [1, 3 * size]
2009
        self._bias_size = bias_size
2010
        self.bias = self.create_parameter(
M
minqiyang 已提交
2011
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
2012

M
minqiyang 已提交
2013
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2014
        if _non_static_mode():
W
wanghuancoder 已提交
2015
            gate, reset_hidden_pre, updated_hidden = _C_ops.gru_unit(
2016 2017 2018 2019
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2020 2021 2022 2023
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2024 2025 2026 2027 2028
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2029
        if self.bias is not None:
2030
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2031 2032 2033 2034 2035
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2045 2046
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2047 2048 2049
            })

        return updated_hidden, reset_hidden_pre, gate
2050 2051 2052 2053


class NCE(layers.Layer):
    """
2054 2055 2056 2057 2058
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2059
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2060

2061
    Parameters:
2062 2063
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2064
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2065 2066 2067
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2068
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2069 2070 2071 2072
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2073
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2074
        sampler (str, optional): The sampler used to sample class from negative classes.
2075 2076
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2077
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2078
                       It is used when sampler is set to 'custom_dist'.
2079
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2080
                       Default: None.
2081 2082
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2083
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2084

2085 2086
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2087

2088 2089
        **bias** (Parameter or None): the learnable bias of this layer.
    
2090
    Returns:
2091
        None
2092 2093 2094 2095

    Examples:
        .. code-block:: python

2096 2097 2098
            import numpy as np
            import paddle.fluid as fluid

2099
            window_size = 5
2100 2101
            dict_size = 20
            label_word = int(window_size // 2) + 1
2102
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2124
                nce = fluid.NCE(
2125
                             num_total_classes=dict_size,
2126
                             dim=embs3.shape[1],
2127 2128 2129 2130 2131 2132 2133
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2134 2135
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2136 2137 2138 2139 2140

    """

    def __init__(self,
                 num_total_classes,
2141
                 dim,
2142
                 sample_weight=None,
2143 2144 2145 2146 2147 2148
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2149 2150 2151
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2152 2153 2154
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2155
        self._dtype = dtype
2156
        self._inputs = dict()
2157
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2245
        self.weight = self.create_parameter(
2246 2247 2248
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2249
            dtype=self._dtype)
2250
        if self._bias_attr:
2251
            self.bias = self.create_parameter(
2252 2253 2254
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2255
                dtype=self._dtype)
2256 2257
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2258

2259
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2260
        if _non_static_mode():
W
Weilong Wu 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
            cost, _, _ = _C_ops.nce(
                input, label, self.weight, self.bias,
                self._inputs['SampleWeight'], self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'], *attrs)
            return cost / (self._num_neg_samples + 1)

2273 2274 2275 2276
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2304
    r"""
2305 2306 2307 2308
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2309 2310 2311 2312 2313
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2314
    Parameters:
L
lujun 已提交
2315
        mode (str): The mode for weight sharing. It supports all, channel
2316 2317 2318
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2319 2320 2321
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2322
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2323 2324
          This argument is required when mode is "element".
          Default: None.
2325 2326
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2327
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2328

2329 2330 2331
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2332
    Returns:
2333
        None
2334 2335 2336 2337 2338

    Examples:

        .. code-block:: python

L
lujun 已提交
2339
          import paddle.fluid as fluid
2340
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2341 2342 2343 2344
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2345
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2357
                 input_shape=inp_np.shape,
L
lujun 已提交
2358
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2359
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2360

2361 2362
    """

S
songyouwei 已提交
2363 2364 2365 2366 2367
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2368
                 dtype='float32'):
2369 2370
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2371 2372
        self._mode = mode
        self._param_attr = param_attr
2373
        self._dtype = dtype
S
songyouwei 已提交
2374 2375 2376 2377 2378 2379
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2380 2381 2382
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2383 2384
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2385 2386 2387 2388 2389 2390 2391
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2392
        self.weight = self.create_parameter(
2393 2394 2395 2396 2397 2398 2399
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2400
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2401 2402 2403 2404
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2405
                    'Alpha': self.weight},
2406 2407 2408 2409 2410 2411
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
2412
    r"""
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2427
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2428

2429
    Parameters:
2430 2431 2432 2433 2434
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2435 2436 2437 2438
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2439
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2440
           If it is set to None, the bias is initialized zero. The default value is None.
2441
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2442

D
DuYao 已提交
2443 2444 2445 2446
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2447

2448
    Returns:
W
wanghuancoder 已提交
2449
       Tensor: A 2-D Tensor of shape [batch_size, size].
2450 2451 2452 2453

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2463

2464 2465 2466
    """

    def __init__(self,
2467 2468 2469
                 input1_dim,
                 input2_dim,
                 output_dim,
2470 2471 2472
                 name=None,
                 act=None,
                 param_attr=None,
2473 2474 2475
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2476 2477 2478 2479
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2480 2481 2482
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2483
        self._inputs = dict()
2484
        self._dtype = dtype
2485

2486
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2487
        self.weight = self.create_parameter(
2488 2489 2490 2491
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2492
        bias_size = [1, self._output_dim]
2493
        self.bias = self.create_parameter(
2494 2495 2496 2497
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2498

2499 2500 2501 2502
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2503
    def forward(self, x, y):
2504 2505 2506 2507
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2508
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2509
        if self.bias is not None:
2510
            self._inputs["Bias"] = self.bias
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2525
        return self._helper.append_activation(out, act=self._act)
2526 2527 2528


class Conv2DTranspose(layers.Layer):
2529
    r"""
2530 2531
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2532
    The convolution2D transpose layer calculates the output based on the input,
2533 2534 2535
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2536 2537
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2538 2539
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2540 2541 2542
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2543 2544
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2545 2546 2547 2548 2549 2550 2551 2552 2553

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2554 2555
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2556
    * :math:`\\ast`: Convolution operation.
2557
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2582
    Parameters:
2583
        num_channels(int): The number of channels in the input image.
2584
        num_filters(int): The number of the filter. It is as same as the output
2585
            feature map.
2586 2587 2588
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2589
        output_size(int or tuple, optional): The output image size. If output size is a
2590 2591 2592
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2593
            should follow the formula above. Default: None.
2594
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2595
            contain two integers, (padding_H, padding_W). Otherwise, the
2596 2597
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2598
            contain two integers, (stride_H, stride_W). Otherwise, the
2599 2600
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2601
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2602
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2603
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2604 2605 2606 2607
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2608 2609
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2610 2611 2612
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2613
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2614 2615 2616 2617
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2618
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2619
            library is installed. Default: True.
2620
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2621
            Default: None.
2622
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2623

2624 2625
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2626

2627
        **bias** (Parameter or None): the learnable bias of this layer.
2628

2629 2630
    Returns:
        None
2631 2632 2633 2634

    Examples:
       .. code-block:: python

2635
          import paddle.fluid as fluid
2636
          import numpy as np
2637 2638

          with fluid.dygraph.guard():
2639
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2640
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2641
                    num_channels=32, num_filters=2, filter_size=3)
2642 2643
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2644 2645 2646
    """

    def __init__(self,
2647
                 num_channels,
2648
                 num_filters,
2649
                 filter_size,
2650 2651 2652 2653 2654 2655 2656 2657
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2658 2659 2660
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2661 2662 2663
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2664
        self._act = act
2665
        self._groups = groups
2666
        self._num_channels = num_channels
2667 2668 2669 2670 2671 2672 2673
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2674
        self._dtype = dtype
2675

2676 2677 2678
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2679
            self._op_type = 'depthwise_conv2d_transpose'
2680 2681
        else:
            self._op_type = 'conv2d_transpose'
2682 2683 2684 2685 2686

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2687 2688
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2700
        filter_shape = [self._num_channels, self._num_filters // self._groups
2701 2702
                        ] + self._filter_size

2703
        self.weight = self.create_parameter(
2704
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2705

2706
        self.bias = self.create_parameter(
2707 2708 2709 2710 2711
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2712
    def forward(self, input):
J
Jiabin Yang 已提交
2713
        if _non_static_mode():
W
wanghuancoder 已提交
2714
            op = getattr(_C_ops, self._op_type)
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2725 2726 2727 2728
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2739 2740 2741 2742
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2743
            inputs=inputs,
2744
            outputs={'Output': pre_bias},
2745
            attrs=attrs)
2746

2747
        if self.bias is not None:
2748 2749 2750 2751 2752
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2753
                        'Y': [self.bias]},
2754 2755 2756 2757 2758 2759
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2760 2761 2762 2763 2764 2765 2766 2767 2768
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2769
    Parameters:
L
lujun 已提交
2770
        name_scope(str): The name of this class.
2771
        num_filters (int): number of filters.
L
lujun 已提交
2772 2773 2774
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2787 2788 2789 2790
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2804
        assert not _non_static_mode(
2805
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2806 2807 2808 2809 2810 2811 2812
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2813
        self._act = act
2814

2815
    def _build_once(self, input):
2816 2817
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2818
        self.weight = self.create_parameter(
2819
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2820

2821
        self.bias = self.create_parameter(
2822 2823 2824 2825 2826
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2827 2828 2829 2830 2831 2832
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2833
                'Filter': [self.weight],
2834 2835 2836 2837 2838 2839 2840
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2841

2842
        if self.bias is not None:
2843 2844 2845 2846 2847
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2848
                        'Y': [self.bias]},
2849 2850 2851 2852 2853 2854
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2855 2856 2857


class RowConv(layers.Layer):
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2876
    Parameters:
L
lujun 已提交
2877
        name_scope(str): The name of this class.
2878 2879 2880
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2881 2882
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2883

2884 2885 2886
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2887
    Returns:
L
lujun 已提交
2888 2889
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2905 2906 2907 2908 2909
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2910
        assert not _non_static_mode(
2911
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2912 2913 2914 2915 2916
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2917
    def _build_once(self, input):
L
lujun 已提交
2918 2919
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2920
        self.weight = self.create_parameter(
2921 2922 2923 2924
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2925 2926 2927 2928 2929 2930

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2931
                    'Filter': [self.weight]},
L
lujun 已提交
2932 2933 2934 2935 2936 2937
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2938 2939 2940 2941
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2942 2943 2944 2945 2946 2947
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2948
        channels(int): The number of channels of input.
2949 2950 2951 2952 2953 2954 2955 2956 2957
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2958
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2972
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2973
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2974 2975 2976 2977

    """

    def __init__(self,
2978
                 channels,
L
lujun 已提交
2979 2980 2981 2982 2983
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2984 2985 2986
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2987 2988 2989
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2990
        self._channels = channels
L
lujun 已提交
2991 2992
        self._groups = groups
        self._act = act
2993
        self._dtype = dtype
L
lujun 已提交
2994 2995 2996
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2997
        param_shape = [self._channels]
L
lujun 已提交
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
3010 3011

    def forward(self, input):
3012 3013 3014 3015 3016
        if in_dygraph_mode():
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
            out, _, _ = _C_ops.group_norm(input, self.weight, self.bias, *attrs)

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            mean_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            variance_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype, stop_gradient=True)
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3031

J
Jiabin Yang 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon,
                       "groups": self._groups})

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3044 3045 3046


class SpectralNorm(layers.Layer):
3047
    r"""
3048 3049
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3060
    :attr:`power_iters` should be a positive integer, do following
3061 3062 3063 3064
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3065
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3066

3067
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3068 3069 3070 3071 3072 3073 3074 3075

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3076
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3077 3078 3079 3080


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3081
    Parameters:
3082
        weight_shape(list or tuple): The shape of weight parameter.
3083 3084 3085 3086
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3087
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3088 3089

    Returns:
3090
        None
3091 3092 3093 3094

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3095 3096
            import paddle
            x = paddle.rand((2,8,32,32))
3097

C
Chen Long 已提交
3098 3099 3100 3101
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3102 3103 3104

    """

3105 3106 3107 3108 3109 3110 3111
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3112 3113 3114
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3115
        self._dtype = dtype
L
lujun 已提交
3116

3117
        self._weight_shape = list(weight_shape)
3118 3119 3120 3121 3122 3123
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3124 3125
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3126

3127
        self.weight_u = self.create_parameter(
L
lujun 已提交
3128 3129 3130 3131
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3132
        self.weight_u.stop_gradient = True
L
lujun 已提交
3133

3134
        self.weight_v = self.create_parameter(
L
lujun 已提交
3135 3136 3137 3138
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3139
        self.weight_v.stop_gradient = True
L
lujun 已提交
3140 3141

    def forward(self, weight):
3142 3143
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3144
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3160
    """
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3171
        feature_size(int): last dimension of nodes_vector.
3172 3173 3174 3175 3176 3177 3178
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3179
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3180

3181 3182
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3183

3184
        **bias** (Parameter or None): the learnable bias of this layer.
3185

3186 3187
    Returns:
        None
L
lujun 已提交
3188

3189
    Examples:
L
lujun 已提交
3190

3191
        .. code-block:: python
3192

3193 3194
          import paddle.fluid as fluid
          import numpy
3195

3196 3197 3198 3199
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3200
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3201
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3202 3203
    """

L
lujun 已提交
3204
    def __init__(self,
3205
                 feature_size,
L
lujun 已提交
3206 3207 3208 3209 3210 3211
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3212 3213 3214
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3215
        self._name = name
3216
        self._feature_size = feature_size
L
lujun 已提交
3217 3218 3219 3220 3221 3222
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3223 3224
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3225
        if self._bias_attr:
3226
            self.bias = self.create_parameter(
L
lujun 已提交
3227 3228 3229 3230
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3231
        self.weight = self.create_parameter(
L
lujun 已提交
3232 3233 3234 3235 3236 3237
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3238 3239
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3251
                'Filter': self.weight
L
lujun 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3261
                        'Y': [self.bias]},
L
lujun 已提交
3262 3263 3264 3265 3266
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3290
          inp_np = paddle.to_tensor(inp_np)
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3302 3303
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3304
        return out