nn.py 114.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import logging
27

28
__all__ = [
L
lujun 已提交
29 30
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
31
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
32
]
M
minqiyang 已提交
33 34


X
Xin Pan 已提交
35
class Conv2D(layers.Layer):
36
    """
37 38
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
39 40 41
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
42 43 44
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
45
    and W is the width of the filter. If the groups is greater than 1,
46
    C will equal the number of input feature map divided by the groups.
47
    Please refer to UFLDL's `convolution
48
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
49 50 51 52 53 54 55 56 57
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

58
        Out = \\sigma (W \\ast X + b)
59 60 61

    Where:

62 63
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
64
    * :math:`\\ast`: Convolution operation.
65
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

88
    Parameters:
89
        name_scope(str): The name for this class.
90
        num_filters(int): The number of filter. It is as same as the output
91 92
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
93 94
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
95
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
96
            contain two integers, (stride_H, stride_W). Otherwise, the
97 98
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
99
            contain two integers, (padding_H, padding_W). Otherwise, the
100 101
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
102
            contain two integers, (dilation_H, dilation_W). Otherwise, the
103 104
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
105 106 107
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
108 109
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
110 111 112 113
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
114
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
115 116 117 118
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
119 120 121 122 123
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
124

125 126 127 128
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
129

130 131 132
    Returns:
        None
    
133
    Raises:
134
        ValueError: if ``use_cudnn`` is not a bool value.
135 136 137

    Examples:
        .. code-block:: python
L
lujun 已提交
138

139 140 141 142 143
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

144
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
145
          with fluid.dygraph.guard():
146 147 148
              conv2d = Conv2D("conv2d", 2, 3)
              data = to_variable(data)
              conv = conv2d(data)
149 150 151

    """

M
minqiyang 已提交
152
    def __init__(self,
X
Xin Pan 已提交
153
                 name_scope,
M
minqiyang 已提交
154 155 156 157 158 159 160 161
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
162 163 164
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
165
        assert param_attr is not False, "param_attr should not be False here."
166
        super(Conv2D, self).__init__(name_scope, dtype)
M
minqiyang 已提交
167 168 169 170
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
171
        self._act = act
M
minqiyang 已提交
172 173 174
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
175 176 177 178 179
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
180 181 182 183 184 185 186
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        # TODO(jiabin): recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275
        self._l_type = 'conv2d'
M
minqiyang 已提交
187

188 189 190 191
    def _build_once(self, input):
        self._num_channels = input.shape[1]
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
192
        else:
193
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
194
                raise ValueError("num_channels must be divisible by groups.")
195 196 197 198
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
        filter_shape = [self._num_filters, int(num_filter_channels)
                        ] + filter_size
M
minqiyang 已提交
199 200

        def _get_default_param_initializer():
201 202
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
203 204 205
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

206
        self._filter_param = self.create_parameter(
207
            attr=self._param_attr,
M
minqiyang 已提交
208 209 210 211
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

212
        self._bias_param = self.create_parameter(
213 214
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
215 216
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

M
minqiyang 已提交
234
    def forward(self, input):
M
minqiyang 已提交
235 236 237
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
238 239 240 241 242 243
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
244
            outputs={"Output": pre_bias},
M
minqiyang 已提交
245 246 247 248
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
249
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
250 251 252 253
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

254 255 256 257 258 259 260 261 262 263 264
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
265

L
lujun 已提交
266
        # Currently, we don't support inplace in dygraph mode
267
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
268 269


L
lujun 已提交
270
class Conv3D(layers.Layer):
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

317
    Parameters:
L
lujun 已提交
318 319
        name_scope(str) : The name for this class.
        num_filters(int): The number of filter. It is as same as the output image channel.
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

352 353 354 355
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

356 357 358 359 360 361 362 363 364 365 366
    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

367 368 369 370 371 372 373 374 375
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
                    'Conv3D', num_filters=2, filter_size=3, act="relu")
              ret = conv3d(fluid.dygraph.base.to_variable(data))

376 377
    """

L
lujun 已提交
378 379 380 381 382 383 384 385 386 387 388
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
389
                 act=None):
L
lujun 已提交
390 391 392 393 394
        assert param_attr is not False, "param_attr should not be False here."
        super(Conv3D, self).__init__(name_scope)
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
395
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
396 397 398 399
        self._act = act
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
400 401 402 403
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
L
lujun 已提交
404

405
    def _build_once(self, input):
406 407 408 409
        num_channels = input.shape[1]
        self._dtype = self._helper.input_dtype(input)

        if self._groups is None:
L
lujun 已提交
410 411
            num_filter_channels = num_channels
        else:
412
            if num_channels % self._groups != 0:
L
lujun 已提交
413
                raise ValueError("num_channels must be divisible by groups.")
414
            num_filter_channels = num_channels // self._groups
L
lujun 已提交
415

416
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
L
lujun 已提交
417

418
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
419 420 421 422 423 424 425 426

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
                2] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
427
            attr=self._param_attr,
L
lujun 已提交
428 429 430 431 432
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
433 434
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
435 436 437
            dtype=self._dtype,
            is_bias=True)

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
454 455 456 457 458
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
459
            type='conv3d',
L
lujun 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

474 475 476 477 478 479 480 481 482 483 484
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
485 486 487 488 489

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

540
    Parameters:
L
lujun 已提交
541
        name_scope(str) : The name for this class.
L
lujun 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

582 583 584 585
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

L
lujun 已提交
586 587 588 589 590 591 592 593 594 595
    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

596 597 598 599 600 601 602 603 604 605 606 607 608
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')

             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
                    'Conv3DTranspose',
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
609 610
    """

L
lujun 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 name=None):
        super(Conv3DTranspose, self).__init__(name_scope)
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
        self._filter_size = filter_size
        self._output_size = output_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act

641
    def _build_once(self, input):
L
lujun 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        self._dtype = self._helper.input_dtype(input)
        self._input_channel = input.shape[1]

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            d_in = input.shape[2]
            h_in = input.shape[3]
            w_in = input.shape[4]

            filter_size_d = (self._output_size[0] -
                             (d_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_h = (self._output_size[1] -
                             (h_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            filter_size_w = (self._output_size[2] -
                             (w_in - 1) * self._stride[2] + 2 * self._padding[2]
                             - 1) // self._dilation[2] + 1
            self._filter_size = [filter_size_d, filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
                self._filter_size, 3, 'conv3d_transpose.filter_size')

        filter_shape = [
            self._input_channel, self._num_filters // self._groups
        ] + self._filter_size
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
730
class Pool2D(layers.Layer):
731
    """
732 733 734 735 736
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
737 738
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

784
    Parameters:
785
        name_scope(str) : The name of this class.
786
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
787
            it must contain two integers, (pool_size_Height, pool_size_Width).
788 789 790 791
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
792
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
793 794 795
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
796
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
797 798 799 800 801 802 803 804
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". 
805 806

    Returns:
807
        None
808 809 810 811 812 813 814 815 816 817

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
818
          import paddle.fluid as fluid
819 820
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
821 822

          with fluid.dygraph.guard():
823
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
L
lujun 已提交
824
             pool2d = fluid.dygraph.Pool2D("pool2d",pool_size=2,
825 826 827
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
828
             pool2d_res = pool2d(to_variable(data))
829 830 831

    """

M
minqiyang 已提交
832
    def __init__(self,
X
Xin Pan 已提交
833
                 name_scope,
M
minqiyang 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
856
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
870 871
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
872 873 874
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
875
            outputs={"Out": pool_out},
M
minqiyang 已提交
876 877 878 879 880 881 882 883 884 885 886
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
887
        return pool_out
M
minqiyang 已提交
888 889


X
Xin Pan 已提交
890
class FC(layers.Layer):
891
    """
892 893 894 895
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
896 897
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
898 899 900
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
901
    is not None, a bias variable will be created and added to the output.
902
    Finally, if ``act`` is not None, it will be applied to the output as well.
903

904
    When the input is single ``Tensor`` :
905 906 907 908 909

    .. math::

        Out = Act({XW + b})

910
    When the input are multiple ``Tensor`` :
911 912 913 914 915 916 917

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

918 919
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
920 921 922
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
923
    * :math:`Out`: The output ``Tensor`` .
924 925 926 927 928 929

    See below for an example.

    .. code-block:: text

        Given:
930 931
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
932

933 934
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
935

936 937
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
938 939

        Then:
940 941
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
942

943
    Parameters:
L
lujun 已提交
944
        name_scope(str): The name of this class.
945
        size(int): The number of output units in this layer.
946 947
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
948 949 950 951 952 953
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
954
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
955 956 957
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
958 959
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
960 961 962
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
963

964 965
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
966

967
        **bias** (Parameter or None): the learnable bias of this layer.
968

969 970 971
    Returns:
        None
    
972 973
    Examples:
        .. code-block:: python
L
lujun 已提交
974

975 976 977 978
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
979

980
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
981
          with fluid.dygraph.guard():
982 983 984
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
985 986 987

    """

M
minqiyang 已提交
988
    def __init__(self,
X
Xin Pan 已提交
989
                 name_scope,
M
minqiyang 已提交
990
                 size,
991
                 num_flatten_dims=1,
M
minqiyang 已提交
992
                 param_attr=None,
M
minqiyang 已提交
993
                 bias_attr=None,
994 995 996
                 act=None,
                 is_test=False,
                 dtype="float32"):
997
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
998

M
minqiyang 已提交
999
        self._size = size
M
minqiyang 已提交
1000 1001
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1002
        self._param_attr = param_attr
1003
        self._bias_attr = bias_attr
1004
        self._act = act
1005 1006
        self.__w = list()

1007
    def _build_once(self, input):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1061
    def forward(self, input):
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1101
        # Currently, we don't support inplace in dygraph mode
1102
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1103 1104 1105


class BatchNorm(layers.Layer):
1106
    """
1107 1108 1109 1110 1111
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1112 1113 1114 1115
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1116 1117 1118
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1119 1120 1121 1122 1123 1124 1125 1126

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1127 1128
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1129 1130 1131

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1132 1133 1134 1135 1136 1137
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1138

1139 1140
    The normalization function formula is as follows:
 
1141 1142 1143
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1144 1145 1146 1147 1148 1149
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1150

1151
    Parameters:
L
lujun 已提交
1152
        name_scope(str): The name of this class.
1153 1154 1155 1156 1157 1158
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1159 1160 1161
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1162
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1163 1164 1165
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
        do_model_average_for_mean_and_var(bool, optional): Do model average for mean and variance or not. Default: False.
        fuse_with_relu (bool, optional): When setting fuse_with_relu True, this OP performs relu after batch norm. 
            Default: False.
        use_global_stats(bool, optional): Whether to use global mean and
1176 1177 1178
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1179 1180 1181 1182
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1183 1184

    Returns:
1185
        None
1186 1187 1188

    Examples:
        .. code-block:: python
L
lujun 已提交
1189 1190

          import paddle.fluid as fluid
1191 1192
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1193

1194
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1195
          with fluid.dygraph.guard():
1196
              x = to_variable(x)
L
lujun 已提交
1197
              batch_norm = fluid.BatchNorm("batch_norm", 10)
1198
              hidden1 = batch_norm(x)
1199 1200
    """

M
minqiyang 已提交
1201
    def __init__(self,
X
Xin Pan 已提交
1202
                 name_scope,
M
minqiyang 已提交
1203 1204 1205 1206 1207 1208 1209
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1210
                 dtype='float32',
M
minqiyang 已提交
1211 1212 1213 1214 1215 1216
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
1217 1218
                 use_global_stats=False,
                 trainable_statistics=False):
1219
        super(BatchNorm, self).__init__(name_scope, dtype)
1220
        self._param_attr = param_attr
1221
        self._bias_attr = bias_attr
1222
        self._act = act
M
minqiyang 已提交
1223 1224 1225

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1226 1227
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1228 1229 1230 1231 1232 1233
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1234 1235
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1236 1237 1238
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1239
        if use_global_stats and self._param_attr.learning_rate == 0.:
1240
            self._scale.stop_gradient = True
M
minqiyang 已提交
1241

1242
        self._bias = self.create_parameter(
1243
            attr=self._bias_attr,
M
minqiyang 已提交
1244 1245 1246
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1247
        if use_global_stats and self._param_attr.learning_rate == 0.:
1248
            self._bias.stop_gradient = True
M
minqiyang 已提交
1249

1250
        self._mean = self.create_parameter(
M
minqiyang 已提交
1251 1252 1253 1254 1255 1256 1257
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1258
        self._mean.stop_gradient = True
M
minqiyang 已提交
1259

1260
        self._variance = self.create_parameter(
M
minqiyang 已提交
1261 1262 1263 1264 1265 1266 1267
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1268
        self._variance.stop_gradient = True
M
minqiyang 已提交
1269 1270

        self._in_place = in_place
1271
        self._data_layout = data_layout
M
minqiyang 已提交
1272 1273 1274 1275 1276
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats
1277
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1278

1279
    def _build_once(self, input):
M
minqiyang 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1290
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1291
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1292
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1293
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1294
            self._dtype)
M
minqiyang 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1316
                "data_layout": self._data_layout,
M
minqiyang 已提交
1317 1318
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1319 1320
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1321 1322
            })

L
lujun 已提交
1323
        # Currently, we don't support inplace in dygraph mode
1324
        return self._helper.append_activation(batch_norm_out, self._act)
1325 1326


1327 1328 1329 1330 1331 1332 1333
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
1334
    All the input variables are passed in as local variables to the LayerHelper constructor
1335

1336
    Parameters:
L
lujun 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        name_scope(str): The name of this class.
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. Default: False
        is_distributed(bool): Whether to run lookup table from remote parameter server. Default: False.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters
            it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. Default: None.
        param_attr(ParamAttr): Parameters for this layer. Default: None.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc. Default: 'float32'.
1347

1348 1349 1350
    Attributes:
        weight (Parameter): the learnable weights of this layer.

1351 1352 1353 1354 1355
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
1356

1357 1358
        .. code-block:: python

L
lujun 已提交
1359 1360 1361 1362
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

1363 1364 1365
          inp_word = np.array([[[1]]]).astype('int64')
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1366
              emb = fluid.dygraph.Embedding(
1367 1368 1369 1370
                  name_scope='embedding',
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1371
              static_rlt3 = emb(base.to_variable(inp_word))
1372 1373
    """

1374
    def __init__(self,
X
Xin Pan 已提交
1375
                 name_scope,
1376 1377 1378 1379 1380 1381
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1382
        super(Embedding, self).__init__(name_scope, dtype)
1383 1384 1385 1386
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1387
            size[0] + padding_idx)
1388 1389 1390

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1391
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1392 1393 1394
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1395
        self._w = self.create_parameter(
1396 1397 1398 1399 1400
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

1401 1402 1403 1404 1405 1406 1407 1408
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
1424 1425


1426
class LayerNorm(layers.Layer):
1427
    """
1428 1429 1430
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1431
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1432

1433
    The formula is as follows:
1434

1435
    ..  math::
1436

1437
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1438

1439
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1440

1441
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1442

1443 1444 1445 1446 1447
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1448

1449
    Parameters:
L
lujun 已提交
1450
        name_scope(str): The name of this class.
1451
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1452
            normalization. Default: True.
1453
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1454
            normalization. Default: True.
1455
        begin_norm_axis(int, optional): The normalization will be performed along
1456
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
L
lujun 已提交
1457
            Default: 1.
1458
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1459
            division by zero. Default: 1e-05.
1460
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1461 1462 1463
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1464
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1465
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1466 1467 1468
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1469
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1470
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1471
                  Default: None.
1472
    Returns:
1473
        None
1474

1475
    Examples:
1476

1477 1478 1479
        .. code-block:: python

          import paddle.fluid as fluid
1480
          from paddle.fluid.dygraph.base import to_variable
1481 1482
          import numpy

1483
          x = numpy.random.random((3, 32, 32)).astype('float32')
1484
          with fluid.dygraph.guard():
1485 1486 1487
              x = to_variable(x)
              layerNorm = fluid.LayerNorm('LayerNorm', begin_norm_axis=1)
              ret = layerNorm(x)
1488

1489
    """
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499
    def __init__(self,
                 name_scope,
                 scale=True,
                 shift=True,
                 begin_norm_axis=1,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None):
1500 1501 1502 1503 1504 1505 1506 1507 1508
        super(LayerNorm, self).__init__(name_scope)
        self._scale = scale
        self._shift = shift
        self._begin_norm_axis = begin_norm_axis
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act

1509
    def _build_once(self, input):
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        self._dtype = self._helper.input_dtype(input)
        input_shape = input.shape
        param_shape = [
            reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
        ]
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1521 1522 1523 1524
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1525 1526 1527 1528 1529 1530 1531
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1532 1533 1534
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

    def forward(self, input):
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1564
        return self._helper.append_activation(layer_norm_out, act=self._act)
1565 1566


M
minqiyang 已提交
1567 1568 1569 1570 1571 1572
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
L
lujun 已提交
1573
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`
M
minqiyang 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1610
    Parameters:
L
lujun 已提交
1611 1612
        name_scope(str): The name of this class.
        size (int): The input dimension value.
M
minqiyang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
L
lujun 已提交
1634
        activation (str): The activation type for cell (actNode).
M
minqiyang 已提交
1635
                             Default: 'tanh'
L
lujun 已提交
1636
        gate_activation (str): The activation type for gates (actGate).
M
minqiyang 已提交
1637
                                  Default: 'sigmoid'
L
lujun 已提交
1638
        dtype(str): The dtype of the layers. Default: 'float32'
M
minqiyang 已提交
1639

1640 1641 1642 1643
    Attributes:
        weight (Parameter): the learnable weights of this layer.
        bias (Parameter): the learnable bias of this layer.

M
minqiyang 已提交
1644 1645
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.
L
lujun 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
              gru = fluid.dygraph.GRUUnit('gru', size=D * 3)
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1666 1667 1668
    """

    def __init__(self,
M
minqiyang 已提交
1669
                 name_scope,
M
minqiyang 已提交
1670 1671 1672 1673 1674 1675 1676
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1677
        super(GRUUnit, self).__init__(name_scope, dtype)
1678
        self._bias_attr = bias_attr
M
minqiyang 已提交
1679 1680 1681 1682 1683 1684

        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1685 1686
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1687

M
minqiyang 已提交
1688
        self._dtype = dtype
M
minqiyang 已提交
1689 1690
        size = size // 3
        # create weight
M
minqiyang 已提交
1691 1692
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1693 1694

        # create bias
M
minqiyang 已提交
1695
        bias_size = [1, 3 * size]
1696
        self._bias_size = bias_size
M
minqiyang 已提交
1697 1698
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, value):
        self._weight = value

    @property
    def bias(self):
        return self._bias

    @bias.setter
    def bias(self, value):
        self._bias = value

M
minqiyang 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1735 1736
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1737 1738 1739
            })

        return updated_hidden, reset_hidden_pre, gate
1740 1741 1742 1743


class NCE(layers.Layer):
    """
1744
    Compute and return the noise-contrastive estimation training loss. See
1745
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1746
    By default this operator uses a uniform distribution for sampling.
1747

1748
    Parameters:
L
lujun 已提交
1749
        name_scope(str): The name of this class.
1750
        num_total_classes (int): Total number of classes in all samples
1751 1752 1753 1754 1755 1756 1757 1758 1759
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1760
        num_neg_samples (int): The number of negative classes. The default value is 10.
1761 1762 1763
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
L
lujun 已提交
1764
        custom_dist (float[]|None): A float[] with size=num_total_classes.
1765
                       It is used when sampler is set to 'custom_dist'.
1766
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1767 1768 1769
                       Default: None.
        seed (int): The seed used in sampler. Default: 0.
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1770

1771 1772 1773 1774
    Attributes:
        weight (Parameter): the learnable weights of this layer.
        bias (Parameter|None): the learnable bias of this layer.

1775 1776 1777 1778 1779 1780
    Returns:
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

1781 1782 1783
            import numpy as np
            import paddle.fluid as fluid

1784
            window_size = 5
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
            dict_size = 20
            label_word = int(window_size // 2) + 1
            inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    'embedding',
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
                nce = fluid.NCE('nce',
                             num_total_classes=dict_size,
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

                nce_loss3 = nce(embs3, words[label_word])
1820 1821 1822 1823 1824 1825

    """

    def __init__(self,
                 name_scope,
                 num_total_classes,
1826
                 sample_weight=None,
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
                 is_sparse=False):
        super(NCE, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes

        self._inputs = dict()
1840
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1928
    def _build_once(self, input, label, sample_weight=None):
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        dim = input.shape[1]
        num_true_class = label.shape[1]
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
            dtype=input.dtype)
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
                dtype=input.dtype)
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1998
    Parameters:
L
lujun 已提交
1999 2000
        name_scope(str): The name of this class.
        mode (str): The mode for weight sharing. It supports all, channel
2001 2002 2003
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2004 2005
        param_attr(ParamAttr|None): The parameter attribute for the learnable
          weight (alpha).
2006

2007 2008 2009
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2010 2011 2012 2013 2014 2015 2016
    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

L
lujun 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
          import paddle.fluid as fluid
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
              mode = 'channel'
              prelu = fluid.PRelu(
                 'prelu',
                 mode=mode,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt = prelu(fluid.dygraph.base.to_variable(inp_np))

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
    """

    def __init__(self, name_scope, mode, param_attr=None):

        super(PRelu, self).__init__(name_scope)
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
        self._alpha_shape = [1]

2040
    def _build_once(self, input):
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
        if self._mode == 'channel':
            self._alpha_shape = [1, input.shape[1], 1, 1]
        elif self._mode == 'element':
            self._alpha_shape = input.shape
        self._dtype = self._helper.input_dtype(input)
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

2053 2054 2055 2056 2057 2058 2059 2060
    @property
    def weight(self):
        return self._alpha

    @weight.setter
    def weight(self, value):
        self._alpha = value

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
     - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

2090
    Parameters:
L
lujun 已提交
2091
       name_scope(str): The name of this class.
2092
       size (int): The dimension of this layer.
L
lujun 已提交
2093 2094 2095 2096 2097
       act (str): Activation to be applied to the output of this layer. Default: None.
       name (str): The name of this layer. Default: None.
       param_attr (ParamAttr): The parameter attribute for the learnable w.
           parameters/weights of this layer. Default: None.
       bias_attr (ParamAttr): The parameter attribute for the bias
2098 2099 2100
           of this layer. If it is set to False, no bias will be added to the output units.
           If it is set to None, the bias is initialized zero. Default: None.

2101 2102 2103 2104
    Attributes:
        weight (Parameter): the learnable weights of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2105 2106 2107 2108 2109 2110
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
                    'BilinearTensorProduct', size=1000)
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    """

    def __init__(self,
                 name_scope,
                 size,
                 name=None,
                 act=None,
                 param_attr=None,
                 bias_attr=None):
        super(BilinearTensorProduct, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._size = size
        self._name = name
        self._inputs = dict()

2138
    def _build_once(self, x, y):
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        self._dtype = self._helper.input_dtype(x)

        param_shape = [self._size, x.shape[1], y.shape[1]]

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

2149 2150 2151 2152 2153 2154
        bias_size = [1, self._size]
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2172 2173
    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
2174 2175
        if self._bias_param:
            self._inputs["Bias"] = self._bias_param
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2190
        return self._helper.append_activation(out, act=self._act)
2191 2192 2193 2194


class Conv2DTranspose(layers.Layer):
    """
2195 2196
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2197
    The convolution2D transpose layer calculates the output based on the input,
2198 2199 2200 2201 2202 2203 2204
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2205 2206 2207
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2208 2209
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2210 2211 2212 2213 2214 2215 2216 2217 2218

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2219 2220
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2221
    * :math:`\\ast`: Convolution operation.
2222
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2247
    Parameters:
L
lujun 已提交
2248
        name_scope(str): The name of this class.
2249
        num_filters(int): The number of the filter. It is as same as the output
2250 2251
            feature map.
        output_size(int or tuple, optional): The output image size. If output size is a
2252 2253 2254
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2255
            should follow the formula above. Default: None.
2256
        filter_size(int or tuple, optional): The filter size. If filter_size is a tuple,
2257 2258
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
L
lujun 已提交
2259
            calculate filter_size. Default: None.
2260
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2261
            contain two integers, (padding_H, padding_W). Otherwise, the
2262 2263
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2264
            contain two integers, (stride_H, stride_W). Otherwise, the
2265 2266
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2267
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2268 2269
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2270 2271 2272 2273
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2274 2275
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2276 2277 2278
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2279
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2280 2281 2282 2283
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2284
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2285
            library is installed. Default: True.
2286
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2287 2288
            Default: None.

2289 2290
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2291

2292
        **bias** (Parameter or None): the learnable bias of this layer.
2293

2294 2295
    Returns:
        None
2296 2297 2298 2299

    Examples:
       .. code-block:: python

2300
          import paddle.fluid as fluid
2301
          import numpy as np
2302 2303

          with fluid.dygraph.guard():
2304
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2305 2306 2307 2308
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
                    'Conv2DTranspose', num_filters=2, filter_size=3)
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None):
        super(Conv2DTranspose, self).__init__(name_scope)
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2328
        self._act = act
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        self._groups = groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
        self._op_type = 'conv2d_transpose'

2339
    def _build_once(self, input):
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
        input_channel = input.shape[1]
        if (input_channel == self._groups and
                self._num_filters == input_channel and not self._use_cudnn):
            self._op_type = 'depthwise_conv2d_transpose'

        if not isinstance(input, Variable):
            raise TypeError("Input of conv2d_transpose must be Variable")

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

        if not isinstance(self._use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            h_in = input.shape[2]
            w_in = input.shape[3]

            filter_size_h = (self._output_size[0] -
                             (h_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_w = (self._output_size[1] -
                             (w_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            self._filter_size = [filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
H
Hongyu Liu 已提交
2374
                self._filter_size, 2, 'conv2d_transpose.filter_size')
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
        filter_shape = [input_channel, self._num_filters // self._groups
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
            dtype=input.dtype, shape=filter_shape, attr=self._param_attr)

2392 2393 2394 2395 2396 2397
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2444 2445 2446 2447 2448 2449 2450 2451 2452
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2453
    Parameters:
L
lujun 已提交
2454
        name_scope(str): The name of this class.
2455
        num_filters (int): number of filters.
L
lujun 已提交
2456 2457 2458
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2471 2472 2473 2474
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2488
        assert not in_dygraph_mode(
2489
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2490 2491 2492 2493 2494 2495 2496
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2497
        self._act = act
2498

2499
    def _build_once(self, input):
2500 2501 2502
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2503
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2504

2505 2506 2507 2508 2509 2510
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2539 2540 2541


class RowConv(layers.Layer):
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2560
    Parameters:
L
lujun 已提交
2561
        name_scope(str): The name of this class.
2562 2563 2564
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2565 2566
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2567

2568 2569 2570
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2571
    Returns:
L
lujun 已提交
2572 2573
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2589 2590 2591 2592 2593
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2594
        assert not in_dygraph_mode(
2595
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2596 2597 2598 2599 2600
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2601
    def _build_once(self, input):
L
lujun 已提交
2602 2603
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2604 2605 2606 2607 2608
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2609 2610 2611 2612 2613 2614

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2615
                    'Filter': [self._filter_param]},
L
lujun 已提交
2616 2617 2618 2619 2620 2621
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        name_scope(str): The name of this class.
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
              groupNorm = fluid.dygraph.nn.GroupNorm('GroupNorm', groups=4)
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

    """

    def __init__(self,
                 name_scope,
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 data_layout='NCHW'):
        super(GroupNorm, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._groups = groups
        self._act = act
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2674
    def _build_once(self, input):
L
lujun 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
        self._dtype = self._helper.input_dtype(input)
        param_shape = [input.shape[1]]
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
2693
        if self._bias_attr:
L
lujun 已提交
2694
            inputs['Bias'] = self._bias
2695
        if self._param_attr:
L
lujun 已提交
2696 2697 2698
            inputs['Scale'] = self._scale

        # create output
2699
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2721
    """
2722 2723
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2755
    Parameters:
L
lujun 已提交
2756
        name_scope(str): The name of this class.
2757 2758 2759 2760
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2761 2762

    Returns:
2763
        None
2764 2765 2766 2767 2768

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2769
            import numpy as np
2770 2771

            with fluid.dygraph.guard():
2772
                x = np.random.random((2, 8, 32, 32)).astype('float32')
2773 2774 2775 2776 2777
                spectralNorm = fluid.dygraph.nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2778 2779 2780 2781 2782 2783
    def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None):
        super(SpectralNorm, self).__init__(name_scope)
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim

2784
    def _build_once(self, weight):
L
lujun 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
        self._dtype = self._helper.input_dtype(weight)
        input_shape = weight.shape
        h = input_shape[self._dim]
        w = np.prod(input_shape) // h

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2821
    """
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
        name_scope(str): The name of this class.
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2840

2841 2842
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2843

2844
        **bias** (Parameter or None): the learnable bias of this layer.
2845

2846 2847
    Returns:
        None
L
lujun 已提交
2848

2849
    Examples:
L
lujun 已提交
2850

2851
        .. code-block:: python
2852

2853 2854
          import paddle.fluid as fluid
          import numpy
2855

2856 2857 2858 2859 2860 2861
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
                'TreeConv', output_size=6, num_filters=1, max_depth=2)
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2862 2863
    """

L
lujun 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    def __init__(self,
                 name_scope,
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
                 name=None):
        super(TreeConv, self).__init__(name_scope)
        self._name = name
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr

2882
    def _build_once(self, nodes_vector, edge_set):
L
lujun 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
        assert isinstance(nodes_vector, Variable)
        assert isinstance(edge_set, Variable)
        self._dtype = self._helper.input_dtype(nodes_vector)

        feature_size = nodes_vector.shape[2]
        w_shape = [feature_size, 3, self._output_size, self._num_filters]
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
    @property
    def weight(self):
        return self.W

    @weight.setter
    def weight(self, value):
        self.W = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
2917
    def forward(self, nodes_vector, edge_set):
2918

L
lujun 已提交
2919 2920 2921 2922
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
2923

L
lujun 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)