conv.py 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

28
from ...fluid import get_flags
L
LielinJiang 已提交
29 30
from ...fluid import core
from ...device import get_cudnn_version
31 32 33 34 35 36 37 38 39 40 41 42 43
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


44 45 46 47 48 49 50 51
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

77 78 79 80 81 82 83 84 85 86 87 88
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

89 90 91 92 93 94
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
                "data_format must be one of {}, but got data_format='{}'".
                format(valid_format, data_format))

L
LielinJiang 已提交
95 96 97 98 99 100 101
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
102 103 104 105 106
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
107
        self._padding_mode = padding_mode
L
LielinJiang 已提交
108
        self.output_padding = output_padding
L
LielinJiang 已提交
109
        if dims != 1:
110
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
111
                padding, channel_last, dims)
L
LielinJiang 已提交
112 113 114 115 116

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
117 118 119 120
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
121 122
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
123 124 125
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

126 127
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
128

L
LielinJiang 已提交
129 130 131
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
132 133 134 135 136 137 138
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
139
        self.weight = self.create_parameter(
L
LielinJiang 已提交
140 141 142
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
143 144 145
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
146 147 148 149 150 151
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
152 153 154 155
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
L
LielinJiang 已提交
156 157
            self._use_cudnn = False

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
        if self.output_padding != 0:
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
175

C
cnn 已提交
176
class Conv1D(_ConvNd):
177
    r"""
C
cnn 已提交
178
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
179 180 181 182 183 184 185 186 187 188 189
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
190 191 192

    For each input :math:`X` , the equation is:

W
whs 已提交
193
    .. math::
W
whs 已提交
194 195 196

        Out = \sigma (W \\ast X + b)

W
whs 已提交
197
    Where:
W
whs 已提交
198

W
whs 已提交
199 200 201 202 203 204
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
205

W
whs 已提交
206
    Example:
W
whs 已提交
207

W
whs 已提交
208
        - Input:
W
whs 已提交
209

W
whs 已提交
210
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
211

W
whs 已提交
212
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
213

W
whs 已提交
214
        - Output:
W
whs 已提交
215

W
whs 已提交
216
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
217

W
whs 已提交
218
        Where
W
whs 已提交
219

W
whs 已提交
220
        .. math::
W
whs 已提交
221

W
whs 已提交
222
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
223

W
whs 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
250
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
251 252 253 254 255 256 257 258 259
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
260

W
whs 已提交
261 262 263
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
264

W
whs 已提交
265 266 267 268 269 270
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
271

W
whs 已提交
272 273
    Examples:
        .. code-block:: python
W
whs 已提交
274

W
whs 已提交
275
          import paddle
C
cnn 已提交
276
          from paddle.nn import Conv1D
W
whs 已提交
277 278 279 280 281 282 283 284 285 286 287 288
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
289
          conv = Conv1D(3, 2, 3)
W
whs 已提交
290 291
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
292
          print(y_t)
W
whs 已提交
293 294
          # [[[133. 238.]
          #   [160. 211.]]]
295
    """
S
swtkiwi 已提交
296

297
    def __init__(self,
298 299 300
                 in_channels,
                 out_channels,
                 kernel_size,
301
                 stride=1,
302
                 padding=0,
303 304
                 dilation=1,
                 groups=1,
305 306
                 padding_mode='zeros',
                 weight_attr=None,
307
                 bias_attr=None,
L
LielinJiang 已提交
308
                 data_format="NCL"):
C
cnn 已提交
309
        super(Conv1D, self).__init__(
310 311 312 313
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
314
            1,
315 316 317 318 319 320 321 322
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
323

324
    def forward(self, x):
L
LielinJiang 已提交
325 326
        padding = 0
        if self._padding_mode != "zeros":
327
            x = F.pad(x,
W
whs 已提交
328
                      self._reversed_padding_repeated_twice,
329 330
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
331 332
        else:
            padding = self._padding
333

L
LielinJiang 已提交
334
        out = F.conv1d(
335
            x,
336 337
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
338
            padding=padding,
339 340 341 342 343 344 345
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
346
class Conv1DTranspose(_ConvNd):
347
    r"""
C
cnn 已提交
348
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
420
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
445 446 447

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
448 449 450 451 452 453
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
454
          from paddle.nn import Conv1DTranspose
455 456 457 458 459 460 461 462 463
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
464
          conv = Conv1DTranspose(2, 1, 2)
465 466
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
467
          print(y_t)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
484
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
498 499

    def forward(self, x, output_size=None):
500
        out = F.conv1d_transpose(
501 502 503 504
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
505 506 507 508 509 510 511 512 513
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
514
class Conv2D(_ConvNd):
515
    r"""
C
cnn 已提交
516
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
564
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
609 610 611
          
          paddle.disable_static()
          
612
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
613
          
C
cnn 已提交
614
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
633
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

648 649 650 651
        if (core.is_compiled_with_cuda() and get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            self._use_cudnn = False

L
LielinJiang 已提交
652 653 654 655 656 657
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
658 659

        out = F.conv._conv_nd(
L
LielinJiang 已提交
660 661 662
            x,
            self.weight,
            bias=self.bias,
663
            stride=self._stride,
664
            padding=self._updated_padding,
L
LielinJiang 已提交
665
            padding_algorithm=self._padding_algorithm,
666 667
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
668 669 670 671
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
672 673 674
        return out


C
cnn 已提交
675
class Conv2DTranspose(_ConvNd):
676
    r"""
C
cnn 已提交
677
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
693 694 695

    ..  math::

696
        Out = \sigma (W \\ast X + b)
697

698
    Where:
699

700 701 702 703 704 705
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
706
    
707
    Parameters:
L
LielinJiang 已提交
708 709 710 711 712
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
713 714 715
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
716 717 718 719 720 721 722
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
723 724
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
725
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
726 727
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
728
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
729 730 731 732 733
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
734
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
735 736 737
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
738
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
739 740 741 742
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
743
        data_format(str, optional): Data format that specifies the layout of input.
744
            It can be "NCHW" or "NHWC". Default: "NCHW".
745

746
    Attribute:
747

748
        **weight** (Parameter): the learnable weights of filters of this layer.
749

750
        **bias** (Parameter or None): the learnable bias of this layer.
751

L
LielinJiang 已提交
752
    Shape:
753

L
LielinJiang 已提交
754
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
755

L
LielinJiang 已提交
756
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
757

L
LielinJiang 已提交
758
        Where
759 760 761 762 763 764 765 766 767 768 769

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

770
    Examples:
771

772
       .. code-block:: python
773

L
LielinJiang 已提交
774 775
          import paddle
          import paddle.nn as nn
C
cnn 已提交
776 777
          
          paddle.disable_static()
778 779 780

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
781
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
782 783 784
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
785 786 787 788
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
789 790 791
                 in_channels,
                 out_channels,
                 kernel_size,
792
                 stride=1,
L
LielinJiang 已提交
793 794
                 padding=0,
                 output_padding=0,
795 796
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
797
                 weight_attr=None,
798
                 bias_attr=None,
L
LielinJiang 已提交
799
                 data_format="NCHW"):
C
cnn 已提交
800
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
816
        if output_size is None:
L
LielinJiang 已提交
817
            output_padding = self.output_padding
818
        else:
L
LielinJiang 已提交
819
            output_padding = 0
820

821
        out = F.conv2d_transpose(
L
LielinJiang 已提交
822
            x,
823 824 825
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
826
            output_padding=output_padding,
827 828 829
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
830
            output_size=output_size,
831 832 833 834
            data_format=self._data_format)
        return out


C
cnn 已提交
835
class Conv3D(_ConvNd):
836
    r"""
837 838
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
839 840 841 842 843 844 845 846 847
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
848 849 850

    ..  math::

851
        Out = \sigma (W \\ast X + b)
852

853
    In the above equation:
854

855 856 857 858 859 860
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
861

862
    Parameters:
863 864
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
865 866
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
867 868
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
869
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
870 871 872 873 874 875
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
876
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
877 878
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
879
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
880 881 882 883
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
884 885
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
886 887 888 889
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
890
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
891 892 893 894
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
895
        data_format(str, optional): Data format that specifies the layout of input.
896
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
897

898
    Attribute:
899

900
        **weight** (Parameter): the learnable weights of filters of this layer.
901

902
        **bias** (Parameter): the learnable bias of this layer.
903

904
    Shape:
905

906
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
907

908
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
909

910
        Where
911 912 913 914 915 916 917 918 919

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

920 921 922
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
923

924
    Examples:
925

926
        .. code-block:: python
927

928 929
          import paddle
          import paddle.nn as nn
C
cnn 已提交
930 931
          
          paddle.disable_static()
932 933

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
934
          
C
cnn 已提交
935
          conv = nn.Conv3D(4, 6, (3, 3, 3))
936 937 938
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
939 940 941 942
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
943 944 945
                 in_channels,
                 out_channels,
                 kernel_size,
946
                 stride=1,
L
LielinJiang 已提交
947
                 padding=0,
948 949
                 dilation=1,
                 groups=1,
950 951
                 padding_mode='zeros',
                 weight_attr=None,
952
                 bias_attr=None,
953
                 data_format="NCDHW"):
C
cnn 已提交
954
        super(Conv3D, self).__init__(
955 956 957 958 959 960 961 962 963 964 965 966 967
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
968

969 970 971 972 973 974
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
975 976

        out = F.conv._conv_nd(
977
            x,
978 979 980
            self.weight,
            bias=self.bias,
            stride=self._stride,
981
            padding=self._updated_padding,
L
LielinJiang 已提交
982
            padding_algorithm=self._padding_algorithm,
983 984
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
985 986 987 988
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
989 990 991
        return out


C
cnn 已提交
992
class Conv3DTranspose(_ConvNd):
993
    r"""
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1007 1008 1009
    
    ..  math::

1010
        Out = \sigma (W \\ast X + b)
1011

1012
    In the above equation:
1013

1014 1015 1016 1017 1018 1019
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1020

1021
    **Note**:
1022

1023
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1024
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1025
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1026 1027 1028 1029 1030 1031
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1032
          conv3d_transpose can compute the kernel size automatically.
1033

1034
    Parameters:
L
LielinJiang 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1044 1045 1046 1047 1048 1049 1050
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1051 1052 1053
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1054 1055
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1056
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1057 1058 1059 1060 1061
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1062
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1063 1064 1065
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1066
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1067 1068 1069 1070
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1071 1072 1073 1074 1075
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1076
        data_format(str, optional): Data format that specifies the layout of input.
1077
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1078

1079
    Attribute:
1080

1081
        **weight** (Parameter): the learnable weights of filters of this layer.
1082

1083
        **bias** (Parameter): the learnable bias of this layer.
1084

L
LielinJiang 已提交
1085
    Shape:
1086

L
LielinJiang 已提交
1087
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1088

L
LielinJiang 已提交
1089
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1090

L
LielinJiang 已提交
1091
        Where
1092 1093 1094 1095 1096 1097 1098 1099 1100

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1101 1102 1103 1104
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1105

1106
       .. code-block:: python
1107

L
LielinJiang 已提交
1108 1109
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1110 1111
          
          paddle.disable_static()
1112 1113

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1114
          
C
cnn 已提交
1115
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1116 1117 1118
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1119 1120 1121 1122
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1123 1124 1125
                 in_channels,
                 out_channels,
                 kernel_size,
1126
                 stride=1,
L
LielinJiang 已提交
1127 1128
                 padding=0,
                 output_padding=0,
1129 1130
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1131
                 weight_attr=None,
1132
                 bias_attr=None,
L
LielinJiang 已提交
1133
                 data_format="NCDHW"):
C
cnn 已提交
1134
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1149
    def forward(self, x, output_size=None):
1150
        if output_size is None:
L
LielinJiang 已提交
1151
            output_padding = self.output_padding
1152
        else:
L
LielinJiang 已提交
1153
            output_padding = 0
1154

1155
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1156
            x,
1157 1158 1159
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1160
            output_padding=output_padding,
1161 1162 1163
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1164
            output_size=output_size,
1165 1166
            data_format=self._data_format)
        return out