conv.py 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
W
whs 已提交
18
    'Conv1d',
19 20
    'Conv2d',
    'Conv3d',
21
    'ConvTranspose1d',
L
LielinJiang 已提交
22 23
    'ConvTranspose2d',
    'ConvTranspose3d',
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
]

import numpy as np

from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


41 42 43 44 45 46 47 48
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

74 75 76 77 78 79 80 81 82 83 84 85
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
86 87 88 89 90
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
91
        self._padding_mode = padding_mode
L
LielinJiang 已提交
92 93 94 95 96 97
        self.output_padding = output_padding

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
98 99 100 101
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
102 103
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
104 105 106
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
107 108 109 110 111 112 113 114 115
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)


W
whs 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
class Conv1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``Conv1d`` class.
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, L_{in})`
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
        - Output:
          Output shape: :math:`(N, C_{out}, L_{out})`
        Where
        .. math::
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
        bias(bool, optional): Whether to use bias. Default: True.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
    Examples:
        .. code-block:: python
          import paddle
          from paddle.nn import Conv1d
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          paddle.disable_static()
          x_t = paddle.to_tensor(x)
          conv = Conv1d(3, 2, 3)
          conv.weight.set_value(w)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print(y_np)
          # [[[133. 238.]
          #   [160. 211.]]]
219
    """
S
swtkiwi 已提交
220

W
whs 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 bias=True,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL",
                 name=None):
        super(Conv1d, self).__init__()
        assert weight_attr is not False, "param_attr should not be False here."
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._groups = groups
        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")
        self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
        self._stride = utils.convert_to_list(stride, 1, 'stride')
        self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
        self._padding = padding  # leave it to F.conv1d
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._data_format = data_format
        self._name = name

        self._padding_mode = padding_mode

        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise ValueError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )
        if not isinstance(padding, str):
            self._padding = utils.convert_to_list(padding, 1, 'padding') * 2

        num_filter_channels = in_channels // groups
        filter_shape = [self._out_channels, num_filter_channels
                        ] + self._kernel_size

        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=filter_shape,
            default_initializer=_get_default_param_initializer(
                self._in_channels, filter_shape))
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels],
            is_bias=True) if bias else None

    def forward(self, x):
        padding = 0
        if self._padding_mode != "zeros":
            x = F.pad(x,
                      self._padding,
                      mode=self._padding_mode,
                      data_format=self._data_format)
        else:
            padding = self._padding

        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            name=self._name)
        return out


class Conv2d(_ConvNd):
    """
305
    This interface is used to construct a callable object of the ``Conv2d`` class.
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
322 323 324 325 326

    ..  math::

        Out = \sigma (W \\ast X + b)

327
    Where:
328

329 330 331 332 333 334
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
335
    
336
    Parameters:
337 338 339 340 341 342
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
343 344
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
345
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
346 347 348 349
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
350 351 352 353
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d Layer. According to grouped
354 355 356
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
357 358 359
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
360
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
361 362 363 364
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
365 366 367
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
368 369
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
370
            It can be "NCHW" or "NHWC". Default: "NCHW".
371

372
    Attribute:
373

374
        **weight** (Parameter): the learnable weights of filter of this layer.
375

376
        **bias** (Parameter or None): the learnable bias of this layer.
377

378
    Shape:
379

380
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
381

382
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
383

384
        Where
385 386 387 388 389 390 391

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

392
    Examples:
393

394
        .. code-block:: python
395

396
          import numpy as np
397 398
          import paddle
          import paddle.nn as nn
399
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
400 401 402 403 404 405 406
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.Conv2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
407 408 409 410 411
          
          # (2, 6, 6, 6)
    """

    def __init__(self,
412 413 414
                 in_channels,
                 out_channels,
                 kernel_size,
415
                 stride=1,
416
                 padding=0,
417 418
                 dilation=1,
                 groups=1,
419 420
                 padding_mode='zeros',
                 weight_attr=None,
421
                 bias_attr=None,
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                 data_format="NCHW"):
        super(Conv2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv2d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
452 453

        out = F.conv2d(
454
            x,
455 456 457
            self.weight,
            bias=self.bias,
            padding=self._padding,
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


class ConvTranspose1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConvTranspose1d`` class.
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is
            "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a
            tuple, it must contain one integer, (feature_length). None if use
            kernel_size, padding, output_padding and stride to calculate output_size.
            If output_size and kernel_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and kernel_size
            should not be None at the same time.
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
          from paddle.nn import ConvTranspose1d
          import numpy as np
          
          paddle.disable_static()
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
          conv = ConvTranspose1d(2, 1, 2)
          conv.weight.set_value(y)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print y_np
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 bias=True,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
        super(ConvTranspose1d, self).__init__()
        assert weight_attr is not False, "param_attr should not be False in ConvTranspose1d."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._output_padding = output_padding
        self._data_format = data_format
        self._bias = bias

        self._stride = utils.convert_to_list(stride, 1, 'stride')
        self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
        self._padding = padding

        filter_shape = [self._in_channels, out_channels // groups
                        ] + self._kernel_size
        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels],
            is_bias=True) if self._bias else None

    def forward(self, x, output_size=None):
        out = F.conv_transpose1d(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self._output_padding,
            padding=self._padding,
643 644 645 646 647 648 649
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
650
class ConvTranspose2d(_ConvNd):
651
    """
L
LielinJiang 已提交
652
    This interface is used to construct a callable object of the ``ConvTranspose2d`` class.
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
668 669 670

    ..  math::

671
        Out = \sigma (W \\ast X + b)
672

673
    Where:
674

675 676 677 678 679 680
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
681
    
682
    Parameters:
L
LielinJiang 已提交
683 684 685 686 687
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
688 689 690
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
691 692 693 694 695 696 697
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
698 699
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
700
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
701 702 703 704 705 706 707 708
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
709
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
710 711 712
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
713
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
714 715 716 717
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
718
        data_format(str, optional): Data format that specifies the layout of input.
719
            It can be "NCHW" or "NHWC". Default: "NCHW".
720

721
    Attribute:
722

723
        **weight** (Parameter): the learnable weights of filters of this layer.
724

725
        **bias** (Parameter or None): the learnable bias of this layer.
726

L
LielinJiang 已提交
727
    Shape:
728

L
LielinJiang 已提交
729
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
730

L
LielinJiang 已提交
731
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
732

L
LielinJiang 已提交
733
        Where
734 735 736 737 738 739 740 741 742 743 744

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

745
    Examples:
746

747
       .. code-block:: python
748

749
          import numpy as np
L
LielinJiang 已提交
750 751
          import paddle
          import paddle.nn as nn
752
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
L
LielinJiang 已提交
753 754 755 756 757 758
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.ConvTranspose2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
759 760 761 762 763
          
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
764 765 766
                 in_channels,
                 out_channels,
                 kernel_size,
767
                 stride=1,
L
LielinJiang 已提交
768 769
                 padding=0,
                 output_padding=0,
770 771
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
772
                 weight_attr=None,
773
                 bias_attr=None,
L
LielinJiang 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                 data_format="NCHW"):
        super(ConvTranspose2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
791
        if output_size is None:
L
LielinJiang 已提交
792
            output_padding = self.output_padding
793
        else:
L
LielinJiang 已提交
794
            output_padding = 0
795

L
LielinJiang 已提交
796 797
        out = F.conv_transpose2d(
            x,
798 799 800
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
801
            output_padding=output_padding,
802 803 804
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
805
            output_size=output_size,
806 807 808 809
            data_format=self._data_format)
        return out


810
class Conv3d(_ConvNd):
811
    """
812 813
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
814 815 816 817 818 819 820 821 822
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
823 824 825

    ..  math::

826
        Out = \sigma (W \\ast X + b)
827

828
    In the above equation:
829

830 831 832 833 834 835
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
836

837
    Parameters:
838 839
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
840 841
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
842 843
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
844
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
845 846 847 848 849 850
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
851
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
852 853
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
854
        groups(int, optional): The groups number of the Conv3d Layer. According to grouped
855 856 857 858
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
859 860
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
861 862 863 864
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
865
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
866 867 868 869
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
870
        data_format(str, optional): Data format that specifies the layout of input.
871
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
872

873
    Attribute:
874

875
        **weight** (Parameter): the learnable weights of filters of this layer.
876

877
        **bias** (Parameter): the learnable bias of this layer.
878

879
    Shape:
880

881
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
882

883
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
884

885
        Where
886 887 888 889 890 891 892 893 894

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

895 896 897
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
898

899
    Examples:
900

901
        .. code-block:: python
902

903
          import numpy as np
904 905 906
          
          import paddle
          import paddle.nn as nn
907
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
908 909 910 911 912 913 914
          
          paddle.disable_static()
          x_var = dg.to_variable(x)
          conv = nn.Conv3d(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
915 916 917 918 919
          
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
920 921 922
                 in_channels,
                 out_channels,
                 kernel_size,
923 924 925 926
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
927 928
                 padding_mode='zeros',
                 weight_attr=None,
929
                 bias_attr=None,
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
                 data_format="NCDHW"):
        super(Conv3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv3d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
960 961

        out = F.conv3d(
962
            x,
963 964 965 966 967 968 969 970 971 972
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
973
class ConvTranspose3d(_ConvNd):
974 975 976 977 978 979 980 981 982 983 984 985 986 987
    """
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
988 989 990
    
    ..  math::

991
        Out = \sigma (W \\ast X + b)
992

993
    In the above equation:
994

995 996 997 998 999 1000
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1001

1002
    **Note**:
1003

L
LielinJiang 已提交
1004
          The conv_transpose3d can be seen as the backward of the conv3d. For conv3d, 
1005
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
L
LielinJiang 已提交
1006
          so for conv_transpose3d, when stride > 1, input shape maps multiple output shape.
1007 1008 1009 1010 1011 1012
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
L
LielinJiang 已提交
1013
          conv_transpose3d can compute the kernel size automatically.
1014

1015
    Parameters:
L
LielinJiang 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1025 1026 1027 1028 1029 1030 1031
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1032 1033 1034
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1035 1036 1037 1038 1039 1040 1041 1042
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1043
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1044 1045 1046
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1047
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1048 1049 1050 1051
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1052 1053 1054 1055 1056
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1057
        data_format(str, optional): Data format that specifies the layout of input.
1058
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1059

1060
    Attribute:
1061

1062
        **weight** (Parameter): the learnable weights of filters of this layer.
1063

1064
        **bias** (Parameter): the learnable bias of this layer.
1065

L
LielinJiang 已提交
1066
    Shape:
1067

L
LielinJiang 已提交
1068
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1069

L
LielinJiang 已提交
1070
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1071

L
LielinJiang 已提交
1072
        Where
1073 1074 1075 1076 1077 1078 1079 1080 1081

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1082 1083 1084 1085
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1086

1087
       .. code-block:: python
1088

1089
          import numpy as np
L
LielinJiang 已提交
1090 1091
          import paddle
          import paddle.nn as nn
1092
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
L
LielinJiang 已提交
1093 1094 1095
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
1096
          conv = nn.ConvTranspose3d(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1097 1098 1099
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1100 1101 1102 1103 1104
          
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1105 1106 1107
                 in_channels,
                 out_channels,
                 kernel_size,
1108
                 stride=1,
L
LielinJiang 已提交
1109 1110
                 padding=0,
                 output_padding=0,
1111 1112
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1113
                 weight_attr=None,
1114
                 bias_attr=None,
L
LielinJiang 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                 data_format="NCDHW"):
        super(ConvTranspose3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size):
1132
        if output_size is None:
L
LielinJiang 已提交
1133
            output_padding = self.output_padding
1134
        else:
L
LielinJiang 已提交
1135
            output_padding = 0
1136

L
LielinJiang 已提交
1137 1138
        out = F.conv_transpose3d(
            x,
1139 1140 1141
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1142
            output_padding=output_padding,
1143 1144 1145
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1146
            output_size=output_size,
1147 1148
            data_format=self._data_format)
        return out