conv.py 50.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

L
LielinJiang 已提交
28 29
from ...fluid import core
from ...device import get_cudnn_version
30 31 32 33 34 35 36 37 38 39 40 41 42
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


43 44 45 46 47 48 49 50
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

76 77 78 79 80 81 82 83 84 85 86 87
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
L
LielinJiang 已提交
101
        self.output_padding = output_padding
L
LielinJiang 已提交
102 103 104
        if dims != 1:
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
L
LielinJiang 已提交
109 110
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
111
        else:
112 113 114 115
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
116 117
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
118 119 120
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
121 122
                self._padding, _ = _update_padding_nd(0, channel_last, dims)

L
LielinJiang 已提交
123 124 125
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
126 127 128 129 130 131 132
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
133
        self.weight = self.create_parameter(
L
LielinJiang 已提交
134 135 136
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
137 138 139
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
140 141 142 143 144 145 146 147 148 149 150
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
        if dims == 2 and (in_channels == groups and in_channels != 1 and
                          out_channels % in_channels == 0):
            self.op_type = 'depthwise_conv2d'
            self._use_cudnn = False

L
LielinJiang 已提交
151

C
cnn 已提交
152
class Conv1D(_ConvNd):
153
    r"""
C
cnn 已提交
154
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
155 156 157 158 159 160 161 162 163 164 165
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
166 167 168

    For each input :math:`X` , the equation is:

W
whs 已提交
169
    .. math::
W
whs 已提交
170 171 172

        Out = \sigma (W \\ast X + b)

W
whs 已提交
173
    Where:
W
whs 已提交
174

W
whs 已提交
175 176 177 178 179 180
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
181

W
whs 已提交
182
    Example:
W
whs 已提交
183

W
whs 已提交
184
        - Input:
W
whs 已提交
185

W
whs 已提交
186
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
187

W
whs 已提交
188
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
189

W
whs 已提交
190
        - Output:
W
whs 已提交
191

W
whs 已提交
192
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
193

W
whs 已提交
194
        Where
W
whs 已提交
195

W
whs 已提交
196
        .. math::
W
whs 已提交
197

W
whs 已提交
198
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
199

W
whs 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
226
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
227 228 229 230 231 232 233 234 235
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
236

W
whs 已提交
237 238 239
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
240

W
whs 已提交
241 242 243 244 245 246
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
247

W
whs 已提交
248 249
    Examples:
        .. code-block:: python
W
whs 已提交
250

W
whs 已提交
251
          import paddle
C
cnn 已提交
252
          from paddle.nn import Conv1D
W
whs 已提交
253 254 255 256 257 258 259 260 261 262 263 264
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
265
          conv = Conv1D(3, 2, 3)
W
whs 已提交
266 267
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
268
          print(y_t)
W
whs 已提交
269 270
          # [[[133. 238.]
          #   [160. 211.]]]
271
    """
S
swtkiwi 已提交
272

273
    def __init__(self,
274 275 276
                 in_channels,
                 out_channels,
                 kernel_size,
277
                 stride=1,
278
                 padding=0,
279 280
                 dilation=1,
                 groups=1,
281 282
                 padding_mode='zeros',
                 weight_attr=None,
283
                 bias_attr=None,
L
LielinJiang 已提交
284
                 data_format="NCL"):
C
cnn 已提交
285
        super(Conv1D, self).__init__(
286 287 288 289
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
290
            1,
291 292 293 294 295 296 297 298
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
299

300
    def forward(self, x):
L
LielinJiang 已提交
301 302
        padding = 0
        if self._padding_mode != "zeros":
303
            x = F.pad(x,
W
whs 已提交
304
                      self._reversed_padding_repeated_twice,
305 306
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
307 308
        else:
            padding = self._padding
309

L
LielinJiang 已提交
310
        out = F.conv1d(
311
            x,
312 313
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
314
            padding=padding,
315 316 317 318 319 320 321
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
322
class Conv1DTranspose(_ConvNd):
323
    r"""
C
cnn 已提交
324
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
396
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
421 422 423

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
424 425 426 427 428 429
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
430
          from paddle.nn import Conv1DTranspose
431 432 433 434 435 436 437 438 439
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
440
          conv = Conv1DTranspose(2, 1, 2)
441 442
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
443
          print(y_t)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
460
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
474 475

    def forward(self, x, output_size=None):
476
        out = F.conv1d_transpose(
477 478 479 480
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
481 482 483 484 485 486 487 488 489
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
490
class Conv2D(_ConvNd):
491
    r"""
C
cnn 已提交
492
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
540
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
585 586 587
          
          paddle.disable_static()
          
588
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
589
          
C
cnn 已提交
590
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
609
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
630 631

        out = F.conv._conv_nd(
L
LielinJiang 已提交
632 633 634
            x,
            self.weight,
            bias=self.bias,
635
            stride=self._stride,
L
LielinJiang 已提交
636 637
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
638 639
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
640 641 642 643
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
644 645 646
        return out


C
cnn 已提交
647
class Conv2DTranspose(_ConvNd):
648
    r"""
C
cnn 已提交
649
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
665 666 667

    ..  math::

668
        Out = \sigma (W \\ast X + b)
669

670
    Where:
671

672 673 674 675 676 677
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
678
    
679
    Parameters:
L
LielinJiang 已提交
680 681 682 683 684
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
685 686 687
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
688 689 690 691 692 693 694
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
695 696
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
697
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
698 699
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
700
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
701 702 703 704 705
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
706
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
707 708 709
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
710
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
711 712 713 714
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
715
        data_format(str, optional): Data format that specifies the layout of input.
716
            It can be "NCHW" or "NHWC". Default: "NCHW".
717

718
    Attribute:
719

720
        **weight** (Parameter): the learnable weights of filters of this layer.
721

722
        **bias** (Parameter or None): the learnable bias of this layer.
723

L
LielinJiang 已提交
724
    Shape:
725

L
LielinJiang 已提交
726
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
727

L
LielinJiang 已提交
728
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
729

L
LielinJiang 已提交
730
        Where
731 732 733 734 735 736 737 738 739 740 741

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

742
    Examples:
743

744
       .. code-block:: python
745

L
LielinJiang 已提交
746 747
          import paddle
          import paddle.nn as nn
C
cnn 已提交
748 749
          
          paddle.disable_static()
750 751 752

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
753
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
754 755 756
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
757 758 759 760
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
761 762 763
                 in_channels,
                 out_channels,
                 kernel_size,
764
                 stride=1,
L
LielinJiang 已提交
765 766
                 padding=0,
                 output_padding=0,
767 768
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
769
                 weight_attr=None,
770
                 bias_attr=None,
L
LielinJiang 已提交
771
                 data_format="NCHW"):
C
cnn 已提交
772
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
788
        if output_size is None:
L
LielinJiang 已提交
789
            output_padding = self.output_padding
790
        else:
L
LielinJiang 已提交
791
            output_padding = 0
792

793
        out = F.conv2d_transpose(
L
LielinJiang 已提交
794
            x,
795 796 797
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
798
            output_padding=output_padding,
799 800 801
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
802
            output_size=output_size,
803 804 805 806
            data_format=self._data_format)
        return out


C
cnn 已提交
807
class Conv3D(_ConvNd):
808
    r"""
809 810
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
811 812 813 814 815 816 817 818 819
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
820 821 822

    ..  math::

823
        Out = \sigma (W \\ast X + b)
824

825
    In the above equation:
826

827 828 829 830 831 832
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
833

834
    Parameters:
835 836
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
837 838
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
839 840
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
841
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
842 843 844 845 846 847
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
848
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
849 850
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
851
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
852 853 854 855
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
856 857
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
858 859 860 861
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
862
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
863 864 865 866
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
867
        data_format(str, optional): Data format that specifies the layout of input.
868
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
869

870
    Attribute:
871

872
        **weight** (Parameter): the learnable weights of filters of this layer.
873

874
        **bias** (Parameter): the learnable bias of this layer.
875

876
    Shape:
877

878
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
879

880
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
881

882
        Where
883 884 885 886 887 888 889 890 891

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

892 893 894
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
895

896
    Examples:
897

898
        .. code-block:: python
899

900 901
          import paddle
          import paddle.nn as nn
C
cnn 已提交
902 903
          
          paddle.disable_static()
904 905

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
906
          
C
cnn 已提交
907
          conv = nn.Conv3D(4, 6, (3, 3, 3))
908 909 910
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
911 912 913 914
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
915 916 917
                 in_channels,
                 out_channels,
                 kernel_size,
918
                 stride=1,
L
LielinJiang 已提交
919
                 padding=0,
920 921
                 dilation=1,
                 groups=1,
922 923
                 padding_mode='zeros',
                 weight_attr=None,
924
                 bias_attr=None,
925
                 data_format="NCDHW"):
C
cnn 已提交
926
        super(Conv3D, self).__init__(
927 928 929 930 931 932 933 934 935 936 937 938 939
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
940

941 942 943 944 945 946
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
947 948

        out = F.conv._conv_nd(
949
            x,
950 951 952
            self.weight,
            bias=self.bias,
            stride=self._stride,
L
LielinJiang 已提交
953 954
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
955 956
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
957 958 959 960
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
961 962 963
        return out


C
cnn 已提交
964
class Conv3DTranspose(_ConvNd):
965
    r"""
966 967 968 969 970 971 972 973 974 975 976 977 978
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
979 980 981
    
    ..  math::

982
        Out = \sigma (W \\ast X + b)
983

984
    In the above equation:
985

986 987 988 989 990 991
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
992

993
    **Note**:
994

995
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
996
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
997
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
998 999 1000 1001 1002 1003
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1004
          conv3d_transpose can compute the kernel size automatically.
1005

1006
    Parameters:
L
LielinJiang 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1016 1017 1018 1019 1020 1021 1022
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1023 1024 1025
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1026 1027
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1028
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1029 1030 1031 1032 1033
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1034
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1035 1036 1037
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1038
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1039 1040 1041 1042
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1043 1044 1045 1046 1047
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1048
        data_format(str, optional): Data format that specifies the layout of input.
1049
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1050

1051
    Attribute:
1052

1053
        **weight** (Parameter): the learnable weights of filters of this layer.
1054

1055
        **bias** (Parameter): the learnable bias of this layer.
1056

L
LielinJiang 已提交
1057
    Shape:
1058

L
LielinJiang 已提交
1059
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1060

L
LielinJiang 已提交
1061
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1062

L
LielinJiang 已提交
1063
        Where
1064 1065 1066 1067 1068 1069 1070 1071 1072

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1073 1074 1075 1076
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1077

1078
       .. code-block:: python
1079

L
LielinJiang 已提交
1080 1081
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1082 1083
          
          paddle.disable_static()
1084 1085

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1086
          
C
cnn 已提交
1087
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1088 1089 1090
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1091 1092 1093 1094
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1095 1096 1097
                 in_channels,
                 out_channels,
                 kernel_size,
1098
                 stride=1,
L
LielinJiang 已提交
1099 1100
                 padding=0,
                 output_padding=0,
1101 1102
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1103
                 weight_attr=None,
1104
                 bias_attr=None,
L
LielinJiang 已提交
1105
                 data_format="NCDHW"):
C
cnn 已提交
1106
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1121
    def forward(self, x, output_size=None):
1122
        if output_size is None:
L
LielinJiang 已提交
1123
            output_padding = self.output_padding
1124
        else:
L
LielinJiang 已提交
1125
            output_padding = 0
1126

1127
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1128
            x,
1129 1130 1131
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1132
            output_padding=output_padding,
1133 1134 1135
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1136
            output_size=output_size,
1137 1138
            data_format=self._data_format)
        return out