conv.py 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

L
LielinJiang 已提交
28 29
from ...fluid import core
from ...device import get_cudnn_version
30 31 32 33 34 35 36 37 38 39 40 41 42
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


43 44 45 46 47 48 49 50
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

76 77 78 79 80 81 82 83 84 85 86 87
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
L
LielinJiang 已提交
101
        self.output_padding = output_padding
L
LielinJiang 已提交
102 103 104
        if dims != 1:
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
L
LielinJiang 已提交
109 110
            self._padding, self._padding_algorithm = _update_padding_nd(
                padding, channel_last, dims)
L
LielinJiang 已提交
111
        else:
112 113 114 115
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
116 117
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
118 119 120
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
121 122
                self._padding, _ = _update_padding_nd(0, channel_last, dims)

L
LielinJiang 已提交
123 124 125
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
126 127 128 129 130 131 132
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
133
        self.weight = self.create_parameter(
L
LielinJiang 已提交
134 135 136
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
137 138 139
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
140 141 142 143 144 145
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
146 147 148 149
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
L
LielinJiang 已提交
150 151
            self._use_cudnn = False

L
LielinJiang 已提交
152

C
cnn 已提交
153
class Conv1D(_ConvNd):
154
    r"""
C
cnn 已提交
155
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
156 157 158 159 160 161 162 163 164 165 166
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
167 168 169

    For each input :math:`X` , the equation is:

W
whs 已提交
170
    .. math::
W
whs 已提交
171 172 173

        Out = \sigma (W \\ast X + b)

W
whs 已提交
174
    Where:
W
whs 已提交
175

W
whs 已提交
176 177 178 179 180 181
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
182

W
whs 已提交
183
    Example:
W
whs 已提交
184

W
whs 已提交
185
        - Input:
W
whs 已提交
186

W
whs 已提交
187
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
188

W
whs 已提交
189
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
190

W
whs 已提交
191
        - Output:
W
whs 已提交
192

W
whs 已提交
193
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
194

W
whs 已提交
195
        Where
W
whs 已提交
196

W
whs 已提交
197
        .. math::
W
whs 已提交
198

W
whs 已提交
199
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
200

W
whs 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
227
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
228 229 230 231 232 233 234 235 236
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
237

W
whs 已提交
238 239 240
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
241

W
whs 已提交
242 243 244 245 246 247
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
248

W
whs 已提交
249 250
    Examples:
        .. code-block:: python
W
whs 已提交
251

W
whs 已提交
252
          import paddle
C
cnn 已提交
253
          from paddle.nn import Conv1D
W
whs 已提交
254 255 256 257 258 259 260 261 262 263 264 265
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
266
          conv = Conv1D(3, 2, 3)
W
whs 已提交
267 268
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
269
          print(y_t)
W
whs 已提交
270 271
          # [[[133. 238.]
          #   [160. 211.]]]
272
    """
S
swtkiwi 已提交
273

274
    def __init__(self,
275 276 277
                 in_channels,
                 out_channels,
                 kernel_size,
278
                 stride=1,
279
                 padding=0,
280 281
                 dilation=1,
                 groups=1,
282 283
                 padding_mode='zeros',
                 weight_attr=None,
284
                 bias_attr=None,
L
LielinJiang 已提交
285
                 data_format="NCL"):
C
cnn 已提交
286
        super(Conv1D, self).__init__(
287 288 289 290
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
291
            1,
292 293 294 295 296 297 298 299
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
300

301
    def forward(self, x):
L
LielinJiang 已提交
302 303
        padding = 0
        if self._padding_mode != "zeros":
304
            x = F.pad(x,
W
whs 已提交
305
                      self._reversed_padding_repeated_twice,
306 307
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
308 309
        else:
            padding = self._padding
310

L
LielinJiang 已提交
311
        out = F.conv1d(
312
            x,
313 314
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
315
            padding=padding,
316 317 318 319 320 321 322
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
323
class Conv1DTranspose(_ConvNd):
324
    r"""
C
cnn 已提交
325
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
397
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
422 423 424

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
425 426 427 428 429 430
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
431
          from paddle.nn import Conv1DTranspose
432 433 434 435 436 437 438 439 440
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
441
          conv = Conv1DTranspose(2, 1, 2)
442 443
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
444
          print(y_t)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
461
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
475 476

    def forward(self, x, output_size=None):
477
        out = F.conv1d_transpose(
478 479 480 481
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
482 483 484 485 486 487 488 489 490
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
491
class Conv2D(_ConvNd):
492
    r"""
C
cnn 已提交
493
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
541
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
586 587 588
          
          paddle.disable_static()
          
589
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
590
          
C
cnn 已提交
591
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
610
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
631 632

        out = F.conv._conv_nd(
L
LielinJiang 已提交
633 634 635
            x,
            self.weight,
            bias=self.bias,
636
            stride=self._stride,
L
LielinJiang 已提交
637 638
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
639 640
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
641 642 643 644
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
645 646 647
        return out


C
cnn 已提交
648
class Conv2DTranspose(_ConvNd):
649
    r"""
C
cnn 已提交
650
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
666 667 668

    ..  math::

669
        Out = \sigma (W \\ast X + b)
670

671
    Where:
672

673 674 675 676 677 678
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
679
    
680
    Parameters:
L
LielinJiang 已提交
681 682 683 684 685
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
686 687 688
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
689 690 691 692 693 694 695
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
696 697
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
698
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
699 700
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
701
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
702 703 704 705 706
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
707
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
708 709 710
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
711
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
712 713 714 715
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
716
        data_format(str, optional): Data format that specifies the layout of input.
717
            It can be "NCHW" or "NHWC". Default: "NCHW".
718

719
    Attribute:
720

721
        **weight** (Parameter): the learnable weights of filters of this layer.
722

723
        **bias** (Parameter or None): the learnable bias of this layer.
724

L
LielinJiang 已提交
725
    Shape:
726

L
LielinJiang 已提交
727
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
728

L
LielinJiang 已提交
729
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
730

L
LielinJiang 已提交
731
        Where
732 733 734 735 736 737 738 739 740 741 742

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

743
    Examples:
744

745
       .. code-block:: python
746

L
LielinJiang 已提交
747 748
          import paddle
          import paddle.nn as nn
C
cnn 已提交
749 750
          
          paddle.disable_static()
751 752 753

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
754
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
755 756 757
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
758 759 760 761
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
762 763 764
                 in_channels,
                 out_channels,
                 kernel_size,
765
                 stride=1,
L
LielinJiang 已提交
766 767
                 padding=0,
                 output_padding=0,
768 769
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
770
                 weight_attr=None,
771
                 bias_attr=None,
L
LielinJiang 已提交
772
                 data_format="NCHW"):
C
cnn 已提交
773
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
789
        if output_size is None:
L
LielinJiang 已提交
790
            output_padding = self.output_padding
791
        else:
L
LielinJiang 已提交
792
            output_padding = 0
793

794
        out = F.conv2d_transpose(
L
LielinJiang 已提交
795
            x,
796 797 798
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
799
            output_padding=output_padding,
800 801 802
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
803
            output_size=output_size,
804 805 806 807
            data_format=self._data_format)
        return out


C
cnn 已提交
808
class Conv3D(_ConvNd):
809
    r"""
810 811
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
812 813 814 815 816 817 818 819 820
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
821 822 823

    ..  math::

824
        Out = \sigma (W \\ast X + b)
825

826
    In the above equation:
827

828 829 830 831 832 833
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
834

835
    Parameters:
836 837
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
838 839
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
840 841
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
842
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
843 844 845 846 847 848
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
849
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
850 851
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
852
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
853 854 855 856
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
857 858
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
859 860 861 862
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
863
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
864 865 866 867
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
868
        data_format(str, optional): Data format that specifies the layout of input.
869
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
870

871
    Attribute:
872

873
        **weight** (Parameter): the learnable weights of filters of this layer.
874

875
        **bias** (Parameter): the learnable bias of this layer.
876

877
    Shape:
878

879
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
880

881
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
882

883
        Where
884 885 886 887 888 889 890 891 892

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

893 894 895
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
896

897
    Examples:
898

899
        .. code-block:: python
900

901 902
          import paddle
          import paddle.nn as nn
C
cnn 已提交
903 904
          
          paddle.disable_static()
905 906

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
907
          
C
cnn 已提交
908
          conv = nn.Conv3D(4, 6, (3, 3, 3))
909 910 911
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
912 913 914 915
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
916 917 918
                 in_channels,
                 out_channels,
                 kernel_size,
919
                 stride=1,
L
LielinJiang 已提交
920
                 padding=0,
921 922
                 dilation=1,
                 groups=1,
923 924
                 padding_mode='zeros',
                 weight_attr=None,
925
                 bias_attr=None,
926
                 data_format="NCDHW"):
C
cnn 已提交
927
        super(Conv3D, self).__init__(
928 929 930 931 932 933 934 935 936 937 938 939 940
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
941

942 943 944 945 946 947
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
948 949

        out = F.conv._conv_nd(
950
            x,
951 952 953
            self.weight,
            bias=self.bias,
            stride=self._stride,
L
LielinJiang 已提交
954 955
            padding=self._padding,
            padding_algorithm=self._padding_algorithm,
956 957
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
958 959 960 961
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
962 963 964
        return out


C
cnn 已提交
965
class Conv3DTranspose(_ConvNd):
966
    r"""
967 968 969 970 971 972 973 974 975 976 977 978 979
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
980 981 982
    
    ..  math::

983
        Out = \sigma (W \\ast X + b)
984

985
    In the above equation:
986

987 988 989 990 991 992
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
993

994
    **Note**:
995

996
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
997
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
998
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
999 1000 1001 1002 1003 1004
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1005
          conv3d_transpose can compute the kernel size automatically.
1006

1007
    Parameters:
L
LielinJiang 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1017 1018 1019 1020 1021 1022 1023
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1024 1025 1026
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1027 1028
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1029
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1030 1031 1032 1033 1034
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1035
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1036 1037 1038
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1039
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1040 1041 1042 1043
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1044 1045 1046 1047 1048
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1049
        data_format(str, optional): Data format that specifies the layout of input.
1050
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1051

1052
    Attribute:
1053

1054
        **weight** (Parameter): the learnable weights of filters of this layer.
1055

1056
        **bias** (Parameter): the learnable bias of this layer.
1057

L
LielinJiang 已提交
1058
    Shape:
1059

L
LielinJiang 已提交
1060
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1061

L
LielinJiang 已提交
1062
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1063

L
LielinJiang 已提交
1064
        Where
1065 1066 1067 1068 1069 1070 1071 1072 1073

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1074 1075 1076 1077
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1078

1079
       .. code-block:: python
1080

L
LielinJiang 已提交
1081 1082
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1083 1084
          
          paddle.disable_static()
1085 1086

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1087
          
C
cnn 已提交
1088
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1089 1090 1091
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1092 1093 1094 1095
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1096 1097 1098
                 in_channels,
                 out_channels,
                 kernel_size,
1099
                 stride=1,
L
LielinJiang 已提交
1100 1101
                 padding=0,
                 output_padding=0,
1102 1103
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1104
                 weight_attr=None,
1105
                 bias_attr=None,
L
LielinJiang 已提交
1106
                 data_format="NCDHW"):
C
cnn 已提交
1107
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1122
    def forward(self, x, output_size=None):
1123
        if output_size is None:
L
LielinJiang 已提交
1124
            output_padding = self.output_padding
1125
        else:
L
LielinJiang 已提交
1126
            output_padding = 0
1127

1128
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1129
            x,
1130 1131 1132
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1133
            output_padding=output_padding,
1134 1135 1136
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1137
            output_size=output_size,
1138 1139
            data_format=self._data_format)
        return out