conv.py 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
W
whs 已提交
18
    'Conv1d',
19 20
    'Conv2d',
    'Conv3d',
21
    'ConvTranspose1d',
L
LielinJiang 已提交
22 23
    'ConvTranspose2d',
    'ConvTranspose3d',
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
]

import numpy as np

from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


41 42 43 44 45 46 47 48
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

74 75 76 77 78 79 80 81 82 83 84 85
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
86 87 88 89 90
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
91
        self._padding_mode = padding_mode
L
LielinJiang 已提交
92 93 94 95 96 97
        self.output_padding = output_padding

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
98 99 100 101 102 103 104 105
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
                _paired_padding = utils.convert_to_list(padding, 2, 'padding')
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

L
LielinJiang 已提交
106 107 108 109 110 111 112 113 114
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)


W
whs 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
class Conv1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``Conv1d`` class.
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, L_{in})`
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
        - Output:
          Output shape: :math:`(N, C_{out}, L_{out})`
        Where
        .. math::
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
        bias(bool, optional): Whether to use bias. Default: True.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
    Examples:
        .. code-block:: python
          import paddle
          from paddle.nn import Conv1d
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          paddle.disable_static()
          x_t = paddle.to_tensor(x)
          conv = Conv1d(3, 2, 3)
          conv.weight.set_value(w)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print(y_np)
          # [[[133. 238.]
          #   [160. 211.]]]
218
    """
S
swtkiwi 已提交
219

W
whs 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 bias=True,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL",
                 name=None):
        super(Conv1d, self).__init__()
        assert weight_attr is not False, "param_attr should not be False here."
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._groups = groups
        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")
        self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
        self._stride = utils.convert_to_list(stride, 1, 'stride')
        self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
        self._padding = padding  # leave it to F.conv1d
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._data_format = data_format
        self._name = name

        self._padding_mode = padding_mode

        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise ValueError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )
        if not isinstance(padding, str):
            self._padding = utils.convert_to_list(padding, 1, 'padding') * 2

        num_filter_channels = in_channels // groups
        filter_shape = [self._out_channels, num_filter_channels
                        ] + self._kernel_size

        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=filter_shape,
            default_initializer=_get_default_param_initializer(
                self._in_channels, filter_shape))
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels],
            is_bias=True) if bias else None

    def forward(self, x):
        padding = 0
        if self._padding_mode != "zeros":
            x = F.pad(x,
                      self._padding,
                      mode=self._padding_mode,
                      data_format=self._data_format)
        else:
            padding = self._padding

        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            name=self._name)
        return out


class Conv2d(_ConvNd):
    """
304
    This interface is used to construct a callable object of the ``Conv2d`` class.
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Parameters:
331 332 333 334 335 336
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by convolution.
        kernel_size (int|list|tuple): The size of convolution kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
337 338 339 340 341 342 343
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
344 345
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` .
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
346 347 348 349 350 351 352
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
353
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
354 355 356 357
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
358
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d.
359 360 361 362 363 364 365 366 367
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
368 369 370 371 372 373 374
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel_size[0] - 1) + 1))}{strides[0]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel_size[1] - 1) + 1))}{strides[1]} + 1
375 376 377
    Examples:
        .. code-block:: python
          import numpy as np
378 379
          import paddle
          import paddle.nn as nn
380
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
381 382 383 384 385 386 387
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.Conv2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
388 389 390 391 392
          
          # (2, 6, 6, 6)
    """

    def __init__(self,
393 394 395
                 in_channels,
                 out_channels,
                 kernel_size,
396
                 stride=1,
397
                 padding=0,
398 399
                 dilation=1,
                 groups=1,
400 401
                 padding_mode='zeros',
                 weight_attr=None,
402
                 bias_attr=None,
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                 data_format="NCHW"):
        super(Conv2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv2d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
433 434

        out = F.conv2d(
435
            x,
436 437 438
            self.weight,
            bias=self.bias,
            padding=self._padding,
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


class ConvTranspose1d(layers.Layer):
    """
    This interface is used to construct a callable object of the ``ConvTranspose1d`` class.
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is
            "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a
            tuple, it must contain one integer, (feature_length). None if use
            kernel_size, padding, output_padding and stride to calculate output_size.
            If output_size and kernel_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and kernel_size
            should not be None at the same time.
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
          from paddle.nn import ConvTranspose1d
          import numpy as np
          
          paddle.disable_static()
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
          conv = ConvTranspose1d(2, 1, 2)
          conv.weight.set_value(y)
          y_t = conv(x_t)
          y_np = y_t.numpy()
          print y_np
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 bias=True,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
        super(ConvTranspose1d, self).__init__()
        assert weight_attr is not False, "param_attr should not be False in ConvTranspose1d."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._output_padding = output_padding
        self._data_format = data_format
        self._bias = bias

        self._stride = utils.convert_to_list(stride, 1, 'stride')
        self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
        self._padding = padding

        filter_shape = [self._in_channels, out_channels // groups
                        ] + self._kernel_size
        self.weight = self.create_parameter(
            shape=filter_shape, attr=self._param_attr)
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels],
            is_bias=True) if self._bias else None

    def forward(self, x, output_size=None):
        out = F.conv_transpose1d(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self._output_padding,
            padding=self._padding,
624 625 626 627 628 629 630
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
631
class ConvTranspose2d(_ConvNd):
632
    """
L
LielinJiang 已提交
633
    This interface is used to construct a callable object of the ``ConvTranspose2d`` class.
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
L
LielinJiang 已提交
671 672 673 674 675 676 677
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
678 679 680 681 682 683 684
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
685
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
686 687
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
L
LielinJiang 已提交
688
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
689 690 691 692 693 694 695 696
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
L
LielinJiang 已提交
697
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
698 699 700
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
L
LielinJiang 已提交
701
        bias_attr (ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
702 703 704 705 706 707 708 709 710
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
L
LielinJiang 已提交
711 712 713 714 715 716 717
    Shape:
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
718 719 720
    Examples:
       .. code-block:: python
          import numpy as np
L
LielinJiang 已提交
721 722
          import paddle
          import paddle.nn as nn
723
          x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
L
LielinJiang 已提交
724 725 726 727 728 729
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.ConvTranspose2d(4, 6, (3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
730 731 732 733 734
          
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
735 736 737
                 in_channels,
                 out_channels,
                 kernel_size,
738
                 stride=1,
L
LielinJiang 已提交
739 740
                 padding=0,
                 output_padding=0,
741 742
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
743
                 weight_attr=None,
744
                 bias_attr=None,
L
LielinJiang 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
                 data_format="NCHW"):
        super(ConvTranspose2d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
762
        if output_size is None:
L
LielinJiang 已提交
763
            output_padding = self.output_padding
764
        else:
L
LielinJiang 已提交
765
            output_padding = 0
766

L
LielinJiang 已提交
767 768
        out = F.conv_transpose2d(
            x,
769 770 771
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
772
            output_padding=output_padding,
773 774 775
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
776
            output_size=output_size,
777 778 779 780
            data_format=self._data_format)
        return out


781
class Conv3d(_ConvNd):
782
    """
783 784
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    In the above equation:
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Parameters:
804 805 806 807
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size (int|list|tuple, optional): The size of the convolving kernel.
        stride (int|list|tuple, optional): The stride size. If stride is a tuple, it must
808 809 810 811 812 813 814 815 816
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
817
        dilation (int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
818 819 820 821 822 823 824
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
825 826
        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
827 828 829 830 831 832 833 834 835 836 837 838 839 840
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter): the learnable bias of this layer.
841 842 843 844 845 846 847 848
    Shape:
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
        Where
        .. math::
           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
849 850 851 852 853 854
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python
          import numpy as np
855 856 857
          
          import paddle
          import paddle.nn as nn
858
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
859 860 861 862 863 864 865
          
          paddle.disable_static()
          x_var = dg.to_variable(x)
          conv = nn.Conv3d(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
866 867 868 869 870
          
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
871 872 873
                 in_channels,
                 out_channels,
                 kernel_size,
874 875 876 877
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
878 879
                 padding_mode='zeros',
                 weight_attr=None,
880
                 bias_attr=None,
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                 data_format="NCDHW"):
        super(Conv3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
            return F.conv3d(
                x,
                self.weight,
                bias=self.bias,
                stride=self._stride,
                dilation=self._dilation,
                groups=self._groups,
                data_format=self._data_format)
911 912

        out = F.conv3d(
913
            x,
914 915 916 917 918 919 920 921 922 923
            self.weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


L
LielinJiang 已提交
924
class ConvTranspose3d(_ConvNd):
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    """
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    In the above equation:
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
    **Note**:
L
LielinJiang 已提交
950
          The conv_transpose3d can be seen as the backward of the conv3d. For conv3d, 
951
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
L
LielinJiang 已提交
952
          so for conv_transpose3d, when stride > 1, input shape maps multiple output shape.
953 954 955 956 957 958
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
L
LielinJiang 已提交
959
          conv_transpose3d can compute the kernel size automatically.
960
    Parameters:
L
LielinJiang 已提交
961 962 963 964 965 966 967 968 969
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
970 971 972 973 974 975 976
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
977 978 979
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
980 981 982 983 984 985 986 987
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
L
LielinJiang 已提交
988
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
989 990 991 992 993 994 995 996
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
997 998 999 1000 1001
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1002 1003 1004 1005 1006
        data_format (str, optional): Data format that specifies the layout of input.
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter): the learnable bias of this layer.
L
LielinJiang 已提交
1007 1008 1009 1010 1011 1012 1013 1014
    Shape:
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
        Where
        .. math::
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel_size[2] - 1) + 1 \\\\
1015 1016 1017 1018 1019 1020
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
       .. code-block:: python
          import numpy as np
L
LielinJiang 已提交
1021 1022
          import paddle
          import paddle.nn as nn
1023
          x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
L
LielinJiang 已提交
1024 1025 1026 1027 1028 1029 1030
          
          paddle.disable_static()
          x_var = paddle.to_tensor(x)
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1031 1032 1033 1034 1035
          
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1036 1037 1038
                 in_channels,
                 out_channels,
                 kernel_size,
1039
                 stride=1,
L
LielinJiang 已提交
1040 1041
                 padding=0,
                 output_padding=0,
1042 1043
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1044
                 weight_attr=None,
1045
                 bias_attr=None,
L
LielinJiang 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                 data_format="NCDHW"):
        super(ConvTranspose3d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size):
1063
        if output_size is None:
L
LielinJiang 已提交
1064
            output_padding = self.output_padding
1065
        else:
L
LielinJiang 已提交
1066
            output_padding = 0
1067

L
LielinJiang 已提交
1068 1069
        out = F.conv_transpose3d(
            x,
1070 1071 1072
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1073
            output_padding=output_padding,
1074 1075 1076
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1077
            output_size=output_size,
1078 1079
            data_format=self._data_format)
        return out