distribute_transpiler.py 112.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
109 110
        min_block_size (int): Minimum splitted block size.
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
143
    A configuration class that provide support for transpiler distributed jobs.
144 145 146
    Some important parameters are explained as follows:


H
haowang101779990 已提交
147 148
    .. py:attribute:: slice_var_up (bool)

149
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
150 151 152

    .. py:attribute:: split_method (PSDispatcher)

153 154 155 156
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: min_block_size (int)

160
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
161 162

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
163
          We can use bandwidth effiently when data size is larger than 2MB.If you
164 165 166 167
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
168

169 170 171
    Examples:
        .. code-block:: python

172 173 174
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

175 176
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
177 178
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
179 180 181 182 183
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
184
    enable_dc_asgd = False
185
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
186
    mode = "pserver"
187
    print_log = False
W
Wu Yi 已提交
188
    wait_port = True
Q
Qiao Longfei 已提交
189
    # split the send recv var in runtime
1
123malin 已提交
190 191
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
192

193 194 195
    # half_async
    half_async = False

196 197 198 199
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

200 201 202 203 204 205 206
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

207
    # if mode is collective
208
    # supported modes: grad_allreduce, local_sgd
209 210
    collective_mode = None

211 212 213 214 215
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
216
        return self.__runtime_split_send_recv
217 218 219 220 221

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
222
        if value and self.__sync_mode:
223 224 225
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
226
        self.__runtime_split_send_recv = value
227 228 229

    @property
    def sync_mode(self):
1
123malin 已提交
230
        return self.__sync_mode
231 232 233 234 235

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
236
        if value and self.__runtime_split_send_recv:
237 238 239
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
240 241 242 243 244 245 246 247 248 249 250
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
251

G
gongweibao 已提交
252

Y
gen rst  
yi.wu 已提交
253
class DistributeTranspiler(object):
Y
yi.wu 已提交
254 255 256 257
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
258
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
259

W
Wu Yi 已提交
260 261 262 263 264 265 266 267 268
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
269 270 271 272

    Examples:
        .. code-block:: python

273 274
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
275 276 277 278 279 280 281 282
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
283 284 285 286 287 288
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
289
            role = "PSERVER"
T
Tink_Y 已提交
290 291 292 293 294 295
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
296
                                                                pserver_program)
T
Tink_Y 已提交
297 298 299 300
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
301 302
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
303 304
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
305
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
306
            t = fluid.DistributeTranspiler(config=config)
307
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
308
            exe = fluid.ParallelExecutor(
309 310 311
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
312 313
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
314
    """
Y
Yancey1989 已提交
315

G
gongweibao 已提交
316 317 318 319 320
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
321
        self._set_server_config()
G
gongweibao 已提交
322 323 324 325

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

326 327 328 329 330 331 332
        if self.config.sync_mode:
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

333 334 335
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
336 337
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
338
        self.counter_var = None
G
gongweibao 已提交
339

1
123malin 已提交
340 341 342 343 344 345 346 347 348 349
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
350 351 352 353
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
354 355
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
356 357 358 359 360 361
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
362 363
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
364 365 366

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
367 368 369 370 371 372 373 374 375

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
376 377 378 379
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
380 381 382 383 384
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
385 386 387 388 389
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
390 391 392 393 394 395 396
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
397 398 399 400 401
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

402 403 404 405 406 407 408 409 410 411 412 413
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
414
        elif collective_mode != "single_process_multi_thread":
415 416
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
417 418
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
419 420 421 422 423 424 425 426 427 428
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
429
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
430
        elif collective_mode == 'local_sgd':
431
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
432 433
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
434 435 436 437 438 439 440 441 442 443 444
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
445
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
446
        sparse_update_ops = []
T
tangwei12 已提交
447
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
448 449
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
450
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
451 452 453
                sparse_update_ops.append(op)
        return sparse_update_ops

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
529

530 531
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
532 533 534 535 536 537

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
538

539 540 541 542 543
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
544
                  sync_mode=True,
W
Wu Yi 已提交
545 546
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
547
        """
548
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
549 550 551 552 553 554

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
555 556
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
557 558
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
559 560 561
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
562
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
563 564
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
565 566 567
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
568 569 570 571 572 573 574 575 576 577 578

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
579
        """
580 581 582 583 584 585 586 587 588

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

589 590
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
591 592
        if startup_program is None:
            startup_program = default_startup_program()
593
        self.origin_program = program
W
Wu Yi 已提交
594 595
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
596

W
Wu Yi 已提交
597 598
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
599
            self.origin_program._trainers_endpoints = trainers.split(",")
600 601
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
602 603 604 605 606
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
607
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
608 609 610 611 612 613 614 615 616 617 618
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
619 620 621 622
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
623 624
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
625 626
            return

627 628 629 630 631 632 633 634 635 636 637
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

638
        self.trainer_num = trainers
639
        self.sync_mode = sync_mode
640 641 642
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
643
        self.vars_overview = VarsDistributed()
644 645
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
646
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
647 648
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
649
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
650
        self.grad_name_to_param_name = dict()
651 652
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
653
            self.grad_name_to_param_name[grad_var.name] = param_var.name
654

Q
Qiao Longfei 已提交
655
        # get all sparse update ops
Q
Qiao Longfei 已提交
656
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
657
            self.origin_program)
Q
Qiao Longfei 已提交
658
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
659
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
660
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
661

T
tangwei12 已提交
662 663 664
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
665
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
666 667 668
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

669
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
670
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
671
        self._init_splited_vars()
672

G
gongweibao 已提交
673
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
674
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
675
        send_vars = []
676 677 678 679 680 681

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
682
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
683

G
gongweibao 已提交
684
        if not self.config.slice_var_up:
685 686
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
687

688
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
689

690
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
691
            eplist = ps_dispatcher.dispatch(splited_vars)
692

G
gongweibao 已提交
693
            if not self.config.slice_var_up:
694 695
                assert (len(splited_vars) == 1)

696
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
697
            if len(splited_vars) == 1:
698
                splited_grad_varname = splited_vars[0].name
699 700
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
701

Y
Yancey1989 已提交
702
            elif len(splited_vars) > 1:
703
                orig_var = program.global_block().vars[splited_grad_varname]
704 705
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
706

Q
Qiao Longfei 已提交
707 708 709 710
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
711 712
            else:
                AssertionError("Can not insert the send op by original "
713
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
714

715 716 717 718 719 720 721
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
722 723
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
724
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
725

Q
Qiao Longfei 已提交
726 727 728 729 730 731 732 733 734 735 736
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
737 738 739 740
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
741
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
742
                index=index + 1,
743
                type="send",
Q
Qiao Longfei 已提交
744
                inputs={"X": send_input_vars},
745
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
746 747
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
748 749
                    "sections": sections,
                    "send_varnames": send_varnames,
750
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
751 752 753
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
754
                    ]
Y
Yancey1989 已提交
755
                })
Y
update  
Yancey1989 已提交
756 757
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
758

759 760 761 762 763 764 765
        send_barrier_out = program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
                self.table_name] = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
        input_deps = list(self.grad_name_to_send_dummy_out.values())
766

767
        if not self.sync_mode:
1
123malin 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
Y
Yancey1989 已提交
821

G
gongweibao 已提交
822
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
823
        recv_vars = []
Y
update  
Yancey1989 已提交
824
        for _, var in enumerate(send_vars):
825
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
826
        ps_dispatcher.reset()
Y
Yancey1989 已提交
827 828
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
829
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
830 831
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
832

833 834 835 836
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

837 838
        need_sparse_update_params = {}

Y
Yancey1989 已提交
839
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
840
        all_recv_outputs = []
841
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
842
            eps = []
Q
Qiao Longfei 已提交
843
            table_names = []
Y
Yancey1989 已提交
844 845 846
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
847
                table_names.append(var.name)
W
Wu Yi 已提交
848 849 850 851
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
852
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
853
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
854

W
Wu Yi 已提交
855 856 857 858 859 860 861 862 863
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
864
            if param_varname in self.sparse_param_to_height_sections:
865 866 867 868 869
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

870
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
871
            else:
Q
Qiao Longfei 已提交
872 873 874
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
875
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
876
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
877
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
878

Q
Qiao Longfei 已提交
879 880 881 882 883 884
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
885
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
886 887 888
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
889
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
890
                    })
T
typhoonzero 已提交
891

892 893
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
894
        if self.sync_mode:
W
Wu Yi 已提交
895
            # form a WAW dependency
Q
qiaolongfei 已提交
896 897
            program.global_block().append_op(
                type="fetch_barrier",
898
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
899
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
900 901
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
902
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
903 904
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
905

906
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
907 908
            if len(splited_var) <= 1:
                continue
909
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
910
            if param_varname not in self.sparse_param_to_height_sections:
911
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
912 913 914 915 916 917 918 919
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
920

G
gongweibao 已提交
921 922
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

923
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
924 925
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
926
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
927

928 929 930
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1003
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1004
        """
C
Chengmo 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
1014 1015 1016

        Returns:
            Program: trainer side program.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1029
        """
T
typhoonzero 已提交
1030
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1031
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1032

T
tangwei12 已提交
1033 1034 1035 1036
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1037 1038
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1039
        self._delete_trainer_optimizer(is_startup=False)
1040

1041
        self.origin_program.__str__()
T
tangwei12 已提交
1042
        self.startup_program.__str__()
G
gongweibao 已提交
1043

W
Wu Yi 已提交
1044 1045 1046
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1047
        return self.origin_program
T
typhoonzero 已提交
1048

W
Wu Yi 已提交
1049
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1050 1051 1052 1053
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1054
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1055
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1056 1057 1058 1059

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1060
        startup_program = self.startup_program
G
gongweibao 已提交
1061 1062 1063

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1064 1065 1066 1067
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1068

M
minqiyang 已提交
1069
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1070 1071
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1092
                inputs={"X": []},
G
gongweibao 已提交
1093 1094 1095
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1096
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1097 1098 1099
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1100 1101
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1102 1103 1104
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1105
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1106 1107
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1108
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1109 1110 1111
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1112
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1113 1114
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1115
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1116 1117
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1118
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1119
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1130 1131 1132 1133 1134 1135 1136 1137
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1138 1139
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1140 1141 1142 1143 1144 1145
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1146

Y
yi.wu 已提交
1147 1148
        Args:
            endpoint (str): current parameter server endpoint.
1149

Y
yi.wu 已提交
1150 1151
        Returns:
            Program: the program for current parameter server to run.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1166
        """
Y
yi.wu 已提交
1167 1168 1169 1170
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1171 1172 1173
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1174 1175
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1176
        pserver_program.random_seed = self.origin_program.random_seed
1177 1178
        pserver_program._copy_dist_param_info_from(self.origin_program)

1179
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1180 1181 1182 1183 1184 1185 1186 1187
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1188 1189 1190 1191 1192
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1202
            if self.sync_mode and self.trainer_num > 1:
1203
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1213

Q
qiaolongfei 已提交
1214
        # step 3
1215
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1216 1217 1218
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1219
        # step 3.2
T
typhoonzero 已提交
1220 1221 1222 1223
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1224 1225
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1226
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1227
        # step 3.3
W
Wu Yi 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1246
        # Iterate through the ops, and if an op and the optimize ops
1247
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1248
        # append it into the sub program.
T
typhoonzero 已提交
1249 1250 1251

        global_ops = []

1252 1253 1254
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1255 1256
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1257
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1258
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1259 1260
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1261
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1262
                self._append_pserver_non_opt_ops(block, op)
1263

Y
Yancey1989 已提交
1264
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1265 1266 1267 1268 1269 1270 1271 1272
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1273
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1274 1275 1276

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1277
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1278 1279

            # clone ops
Y
Yancey1989 已提交
1280 1281
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1282
                # clone sub_block of op
Y
Yancey1989 已提交
1283
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1284 1285

            # reset the block of op
W
Wu Yi 已提交
1286
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1287

1288
        # append lr decay ops to the child block if exists
1289
        lr_ops = self._get_lr_ops()
1290 1291
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1292 1293

        lr_decay_block_id = -1
1294
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1295
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1296
                pserver_program.num_blocks - 1)
1297
            optimize_blocks.append(lr_decay_block)
1298
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1299
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1300
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1301 1302
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1303
            lr_decay_block_id = lr_decay_block.idx
1304

T
typhoonzero 已提交
1305
        # append op to the current block
Q
qiaolongfei 已提交
1306
        grad_to_block_id = []
Q
qiaolongfei 已提交
1307
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1308
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1309
            per_opt_block = pserver_program._create_block(pre_block_idx)
1310
            optimize_blocks.append(per_opt_block)
1311
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1312
            # append grad merging ops before clip and weight decay
1313 1314
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1315
            for _, op in enumerate(self.optimize_ops):
1316
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1317
                # merged_var should be the input var name of L2Decay
1318 1319 1320
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1321 1322 1323
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1324 1325 1326 1327 1328 1329
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1330
                            op not in global_ops:
1331 1332 1333 1334 1335
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1336

1337
        # dedup grad to ids list
W
Wu Yi 已提交
1338
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1339
        # append global ops
1340
        if global_ops:
W
Wu Yi 已提交
1341
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1342
                pserver_program.num_blocks - 1)
1343
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1344
            for glb_op in global_ops:
X
Xi Chen 已提交
1345
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1346
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1347

1348
        # process distributed lookup_table
Q
qiaolongfei 已提交
1349
        prefetch_var_name_to_block_id = []
1350 1351
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1352
            table_opt_block = self._create_table_optimize_block(
1353
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1354
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1355
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1356
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1357 1358
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1359

T
tangwei12 已提交
1360
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1361 1362
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1363

1364
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1365 1366
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1367 1368 1369 1370 1371 1372
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1373
        attrs = {
1374
            "optimize_blocks": optimize_blocks,
1375
            "endpoint": endpoint,
1376
            "pserver_id": self.pserver_endpoints.index(endpoint),
1377
            "Fanin": self.trainer_num,
1378
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1379
            "grad_to_block_id": grad_to_block_id,
1380
            "sparse_grad_to_param": sparse_grad_to_param,
1381
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1382 1383 1384 1385
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1386
        }
T
tangwei12 已提交
1387 1388

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1389
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1390 1391
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1392

T
tangwei12 已提交
1393 1394 1395 1396
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1397 1398 1399 1400 1401
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1402
            attrs=attrs)
1403

W
Wu Yi 已提交
1404
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1405 1406
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1407 1408
        return pserver_program

W
Wu Yi 已提交
1409 1410 1411
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1412 1413
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1414 1415 1416

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1417

W
Wu Yi 已提交
1418 1419
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1434 1435
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1436 1437
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1438 1439
        return pserver_prog, pserver_startup

1440 1441
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1442
                            pserver_program=None,
1443
                            startup_program=None):
T
typhoonzero 已提交
1444
        """
W
Wu Yi 已提交
1445 1446
        **Deprecated**

T
typhoonzero 已提交
1447 1448 1449
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1450 1451 1452

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1453 1454
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1455
                when initalizing
1456

Y
yi.wu 已提交
1457 1458
        Returns:
            Program: parameter server side startup program.
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1474 1475
        """
        s_prog = Program()
W
Wu Yi 已提交
1476
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1477
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1489
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1490
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1491
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1492 1493 1494 1495
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1496
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1497 1498
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1509 1510

            if op_on_pserver:
1511 1512 1513
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1514
                if op.type in [
1515 1516
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1517
                ]:
W
Wu Yi 已提交
1518
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1519 1520 1521 1522
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1523
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1533

T
typhoonzero 已提交
1534 1535
        return s_prog

1536 1537
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1538
        block_suffix = "block"
1539 1540 1541
        block_idx = 0
        offset = 0
        is_slice = False
1542

1543
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1544

1545 1546
        if not block_name:
            return is_slice, block_idx, offset
1547

1548 1549 1550 1551
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1552 1553 1554 1555 1556
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1582 1583 1584 1585
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1623

Y
yi.wu 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1663
    def _init_splited_vars(self):
Y
yi.wu 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1687
        if self.config.slice_var_up:
Y
yi.wu 已提交
1688 1689
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1690 1691 1692
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1693
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1694 1695
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1696 1697 1698
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1699 1700 1701 1702
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1703 1704
        assert (len(grad_blocks) == len(param_blocks))

1705
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1706 1707
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1724
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1725 1726 1727 1728
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1729
        # dict(grad_splited_var -> param_splited_var)
1730
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1731 1732 1733
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1734
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1735
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1736 1737

        # create mapping of endpoint -> split var to create pserver side program
1738
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1748
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1749 1750
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1751
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1752
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1753 1754
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1755 1756
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1757 1758 1759 1760 1761 1762

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1763 1764
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1765
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1766 1767 1768
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1769 1770
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1771 1772
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1773 1774 1775
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1776
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1777
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1778 1779

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1780
                    self.all_out_emb_vars.append(out_var)
1781 1782

                    # delete lookup_table_op
1783
                    delete_ops(program.global_block(), [op])
1784 1785 1786
                    # break for loop
                    break

S
seiriosPlus 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1833
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1834
        # 2. add split_ids_op and send_op to send gradient to pservers
1835

1836 1837
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1838
        table_grad_name = grad_var_name(self.table_name)
1839 1840 1841 1842
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1843
                program.global_block()._insert_op(
1844 1845 1846 1847 1848
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1849 1850
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1851
                program.global_block()._insert_op(
1852
                    index=op_index + 2,
1853
                    type="send",
1854
                    inputs={'X': self.trainer_side_table_grad_list},
1855 1856 1857 1858 1859
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1860 1861
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1862
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1863 1864 1865 1866 1867
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1868
                    })
1869 1870 1871 1872 1873 1874
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1875
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1901
        return prefetch_var_name_to_block_id
1902 1903

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1904
                                     pre_block_idx, grad_to_block_id):
1905
        # STEP: create table optimize block
1906
        table_opt_block = pserver_program._create_block(pre_block_idx)
1907
        # create table param and grad var in pserver program
1908 1909
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1910 1911 1912
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1913 1914
        ][0]

Y
Yancey1989 已提交
1915 1916
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1917

T
tangwei12 已提交
1918
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1919 1920
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1921 1922 1923
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1924 1925
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1926
            shape=table_shape,
Y
Yancey1989 已提交
1927 1928 1929
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1930

1931 1932
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1933
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1934
            self.origin_program.global_block().vars[grad_var_name(
1935
                self.table_name)])
1936

1937 1938 1939
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1940

1941 1942 1943
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1944
            pserver_side_table_grad_list = [
1945 1946 1947 1948 1949 1950 1951 1952 1953
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1954
            # append sum op for pserver_side_table_grad_list
1955 1956
            table_opt_block.append_op(
                type="sum",
1957
                inputs={"X": pserver_side_table_grad_list},
1958 1959
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1960 1961
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1962
            origin_grad_name = grad_var.name
1963 1964
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1965 1966
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1967
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1968
            grad_var = pserver_program.global_block()._rename_var(
1969
                origin_grad_name, splited_grad_name)
1970 1971 1972 1973 1974 1975 1976

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1977
        # only support sgd now
1978 1979 1980
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1981
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1982

1983 1984 1985
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1986 1987
        return table_opt_block

T
tangwei12 已提交
1988 1989 1990 1991 1992
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1993
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1994
            name="kLookupTablePath",
T
tangwei12 已提交
1995 1996
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1997

W
Wu Yi 已提交
1998
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1999
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
2000 2001 2002 2003
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
2004
            attrs={'file_path': "none"})
T
tangwei12 已提交
2005 2006 2007

        return checkpoint_save_block.idx

T
typhoonzero 已提交
2008 2009 2010 2011 2012
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
2013
        Create vars for each split.
T
typhoonzero 已提交
2014 2015
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2016 2017 2018 2019
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2020
        Returns:
2021
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2022
                from original var name to each var split.
T
typhoonzero 已提交
2023
        """
2024 2025

        # varname->[(block_id, current_block_size)]
2026
        block_map = collections.OrderedDict()
2027

2028
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2029 2030
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2031
            if varname not in block_map:
T
typhoonzero 已提交
2032
                block_map[varname] = []
2033
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2034

M
minqiyang 已提交
2035
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
2036
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
2037
            if len(splited) == 1:
2038
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2039
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2040
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2041
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2042 2043 2044 2045 2046
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2047
                continue
T
typhoonzero 已提交
2048
            var_mapping[varname] = []
T
typhoonzero 已提交
2049 2050 2051 2052
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2053

T
typhoonzero 已提交
2054
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2055
                size = block[1]
M
minqiyang 已提交
2056
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2057 2058 2059
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2060
                new_var_name = ""
2061
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2062
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2063
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2064 2065
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2066
                                   (varname, i)
T
typhoonzero 已提交
2067
                var = program.global_block().create_var(
T
typhoonzero 已提交
2068 2069
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2070
                    dtype=orig_var.dtype,
2071
                    type=orig_var.type,
T
typhoonzero 已提交
2072
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2073
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2074
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2075
        return var_mapping
T
done  
typhoonzero 已提交
2076

2077
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2078 2079 2080 2081 2082 2083
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2084
            persistable=persistable)
T
done  
typhoonzero 已提交
2085

Q
Qiao Longfei 已提交
2086 2087 2088 2089 2090 2091 2092
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2093
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2094 2095
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2096
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2097
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2098
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2099 2100
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2101
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2102 2103 2104 2105
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2106 2107 2108 2109
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2110
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2111
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2112 2113 2114 2115
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2116
                attrs={
Q
Qiao Longfei 已提交
2117
                    "sections": height_sections,
2118 2119
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2120 2121 2122
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2123

T
typhoonzero 已提交
2124 2125 2126 2127
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2128
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2141
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2142 2143
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2144 2145
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2146
                return param_shape
2147 2148 2149
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2150 2151 2152
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2153 2154
        elif op_type == "sgd":
            pass
2155 2156 2157 2158
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2159 2160
        return orig_shape

2161 2162
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2163
        orig_var_name = ""
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2174
        else:
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2197
            return None
2198 2199 2200 2201
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2202
        else:
2203
            merged_var_name = orig_varname
2204 2205

        merged_var = pserver_block.vars[merged_var_name]
2206 2207 2208
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2209
            for i in range(self.trainer_num):
2210
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2211
                                   (merged_var_name, i)
2212 2213 2214 2215
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2216 2217
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2218 2219 2220 2221 2222
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2223
        return merged_var
T
typhoonzero 已提交
2224

W
Wu Yi 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2287
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2288 2289
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2290
        program = optimize_block.program
T
typhoonzero 已提交
2291
        pserver_block = program.global_block()
2292
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2303 2304 2305 2306
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2307
        for key in opt_op.input_names:
T
typhoonzero 已提交
2308
            if key == "Grad":
W
Wu Yi 已提交
2309 2310 2311
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2322
            elif key == "Param":
W
Wu Yi 已提交
2323
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2324 2325
                if not param_block:
                    return
T
typhoonzero 已提交
2326
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2327
                    name=param_block.name,
T
typhoonzero 已提交
2328
                    persistable=True,
T
typhoonzero 已提交
2329 2330 2331
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2332
            elif key == "LearningRate":
2333
                # learning rate variable has already be created by non-optimize op,
2334
                # don't create it once again.
2335
                lr_varname = opt_op.input(key)[0]
2336
                if lr_varname in pserver_block.vars:
2337 2338 2339 2340 2341 2342 2343 2344 2345
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2346

T
typhoonzero 已提交
2347
        for key in opt_op.input_names:
2348
            new_shape = None
2349 2350 2351 2352
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2353
                continue
2354
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2355
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2356
            # update accumulator variable shape
2357 2358
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2359
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2360 2361 2362 2363 2364
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2365

2366
        # change output's ParamOut variable
2367 2368
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2369
        outputs["ParamOut"] = new_inputs["Param"]
2370
        optimize_block.append_op(
T
typhoonzero 已提交
2371 2372
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2373
            outputs=outputs,
G
gongweibao 已提交
2374
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2375

2376 2377 2378 2379 2380 2381
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2393
        grad_block = None
M
minqiyang 已提交
2394
        for _, g in six.iteritems(var_dict):
2395
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2396
                # skip per trainer vars
2397
                if g.name.find(".trainer_") == -1:
2398
                    # only param or grads have splited blocks
2399 2400
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2401 2402
                        grad_block = g
                        break
2403 2404
        return grad_block

Q
Qiyang Min 已提交
2405 2406 2407
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2408
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2409 2410 2411 2412
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2413
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2414 2415 2416

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2417
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2418 2419 2420 2421
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2422
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2423

Y
Yancey1989 已提交
2424
        return block.append_op(
G
gongweibao 已提交
2425
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2426 2427

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2428
        program = optimize_block.program
2429
        # Append the ops for parameters that do not need to be optimized/updated
2430 2431
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2432
        for key, varlist in six.iteritems(inputs):
2433 2434
            if not isinstance(varlist, list):
                varlist = [varlist]
2435 2436 2437
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2438
                # for inputs/outputs
2439
                grad_block = self._get_pserver_grad_param_var(
2440 2441
                    var, program.global_block().vars)
                if grad_block:
2442
                    varlist[i] = grad_block
2443
                elif var.name not in program.global_block().vars:
2444 2445 2446 2447 2448
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2449

2450 2451
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2452
        for key, varlist in six.iteritems(outputs):
2453 2454
            if not isinstance(varlist, list):
                varlist = [varlist]
2455 2456 2457
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2458 2459
                    var, program.global_block().vars)
                if grad_block:
2460
                    varlist[i] = grad_block
2461
                elif var.name not in program.global_block().vars:
2462 2463 2464 2465 2466
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2467

Y
Yancey1989 已提交
2468
        return optimize_block.append_op(
T
typhoonzero 已提交
2469
            type=opt_op.type,
T
typhoonzero 已提交
2470 2471
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2472
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2473

2474 2475 2476 2477
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2478
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2479
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2480 2481 2482 2483 2484 2485
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2486 2487
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2488 2489 2490 2491 2492 2493
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2494
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2495
        if "Param" in op.input_names and \
T
tangwei12 已提交
2496
                "LearningRate" in op.input_names:
2497 2498 2499 2500 2501 2502 2503
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2504
        if op.input("Param")[0] in param_names:
2505 2506 2507
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2508
                param = op.input("Param")[0]
T
typhoonzero 已提交
2509
                if same_or_split_var(n, param) and n != param:
2510 2511 2512
                    return True
            return False

T
typhoonzero 已提交
2513
    def _get_input_map_from_op(self, varmap, op):
2514
        """Returns a dict from op input name to the vars in varmap."""
2515
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2527
        """Returns a dict from op output name to the vars in varmap."""
2528
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2538 2539

    def _get_lr_ops(self):
2540 2541
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2542
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2543 2544 2545 2546
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2593 2594 2595 2596 2597
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2598 2599 2600 2601
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2602
            if self._is_optimizer_op(op):
2603 2604 2605 2606
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2607
        block = self.origin_program.global_block()
2608 2609 2610 2611 2612
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2613

2614 2615 2616 2617 2618
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2619
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2620 2621 2622 2623 2624 2625
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2626 2627
                    # we only need to append op for once
                    break
2628
        return lr_ops
Y
Yancey1989 已提交
2629

W
Wu Yi 已提交
2630 2631 2632 2633 2634
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2635 2636
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2637 2638 2639
            return True
        return False

Y
Yancey1989 已提交
2640
    def _get_optimize_pass(self):
2641
        """
2642
        Get optimizer operators, parameters and gradients from origin_program
2643 2644
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2645
            params_grads (dict): parameter->gradient.
2646
        """
Y
Yancey1989 已提交
2647 2648 2649
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2650 2651
        # tmp set to dedup
        optimize_params = set()
2652
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2653
        for op in block.ops:
W
Wu Yi 已提交
2654
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2665
                opt_ops.append(op)
2666 2667 2668 2669 2670 2671
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2672 2673
                        params_grads.append([
                            origin_var_dict[param_name],
2674
                            origin_var_dict[grad_name]
2675
                        ])
Y
Yancey1989 已提交
2676 2677
            else:
                pass
C
Chengmo 已提交
2678 2679 2680 2681 2682 2683

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2684
        return opt_ops, params_grads
C
Chengmo 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads