distribute_transpiler.py 112.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

1
123malin 已提交
33
import os
T
tangwei12 已提交
34
import sys
T
typhoonzero 已提交
35
import math
T
tangwei12 已提交
36 37
from functools import reduce

38
import collections
T
tangwei12 已提交
39
import six
Q
Qiao Longfei 已提交
40
import logging
41

T
tangwei12 已提交
42 43
import numpy as np

44
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
45
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
46
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
47 48 49
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
50
from ..distribute_lookup_table import find_distributed_lookup_table
51
from . import collective
52 53 54

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
C
Chengmo 已提交
55 56
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
57
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
58 59
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
60
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
61
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


68 69 70 71 72 73 74
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


75 76 77
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
78 79


T
typhoonzero 已提交
80 81 82 83 84 85
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
86

T
typhoonzero 已提交
87 88
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
89 90


91 92 93 94
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
95
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
96
    """
97 98 99 100 101 102
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
103
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
104 105 106

    Args:
        var_list (list): List of variables.
107 108
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
109 110
        min_block_size (int): Minimum splitted block size.
    Returns:
111
        blocks (list[(varname, block_id, current_block_size)]): A list
112
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
113 114 115
    """
    blocks = []
    for var in var_list:
116
        split_count = slice_count
T
typhoonzero 已提交
117 118 119 120
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
121
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
131
        # update split_count after aligning
T
typhoonzero 已提交
132
        split_count = int(math.ceil(var_numel / float(block_size)))
133
        for block_id in range(split_count):
T
typhoonzero 已提交
134 135 136 137 138 139 140
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
141 142
class DistributeTranspilerConfig(object):
    """
143
    A configuration class that provide support for transpiler distributed jobs.
144 145 146
    Some important parameters are explained as follows:


H
haowang101779990 已提交
147 148
    .. py:attribute:: slice_var_up (bool)

149
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
150 151 152

    .. py:attribute:: split_method (PSDispatcher)

153 154 155 156
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: min_block_size (int)

160
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
161 162

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
163
          We can use bandwidth effiently when data size is larger than 2MB.If you
164 165 166 167
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
168

169 170 171
    Examples:
        .. code-block:: python

172 173 174
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

175 176
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
177 178
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
179 180 181 182 183
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
184
    enable_dc_asgd = False
185
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
186
    mode = "pserver"
187
    print_log = False
W
Wu Yi 已提交
188
    wait_port = True
Q
Qiao Longfei 已提交
189
    # split the send recv var in runtime
1
123malin 已提交
190 191
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
192

193 194 195 196
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

197 198 199 200 201 202 203
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

204
    # if mode is collective
205
    # supported modes: grad_allreduce, local_sgd
206 207
    collective_mode = None

208 209 210 211 212
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
213
        return self.__runtime_split_send_recv
214 215 216 217 218

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
219
        if value and self.__sync_mode:
220 221 222
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
223
        self.__runtime_split_send_recv = value
224 225 226

    @property
    def sync_mode(self):
1
123malin 已提交
227
        return self.__sync_mode
228 229 230 231 232

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
233
        if value and self.__runtime_split_send_recv:
234 235 236
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
237 238 239 240 241 242 243 244 245 246 247
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
            os.getenv("FLAGS_rpc_send_thread_num", "12"))
        self._rpc_get_thread_num = int(
            os.getenv("FLAGS_rpc_get_thread_num", "12"))
        self._rpc_prefetch_thread_num = int(
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12"))
248

G
gongweibao 已提交
249

Y
gen rst  
yi.wu 已提交
250
class DistributeTranspiler(object):
Y
yi.wu 已提交
251 252 253 254
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
255
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
256

W
Wu Yi 已提交
257 258 259 260 261 262 263 264 265
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
266 267 268 269

    Examples:
        .. code-block:: python

270 271
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
272 273 274 275 276 277 278 279
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
280 281 282 283 284 285
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
286
            role = "PSERVER"
T
Tink_Y 已提交
287 288 289 290 291 292
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
293
                                                                pserver_program)
T
Tink_Y 已提交
294 295 296 297
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
298 299
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
300 301
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
302
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
303
            t = fluid.DistributeTranspiler(config=config)
304
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
305
            exe = fluid.ParallelExecutor(
306 307 308
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
309 310
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
311
    """
Y
Yancey1989 已提交
312

G
gongweibao 已提交
313 314 315 316 317
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
318
        self._set_server_config()
G
gongweibao 已提交
319 320 321 322

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

323 324 325 326 327 328 329
        if self.config.sync_mode:
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

330 331 332
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
333 334
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
335
        self.counter_var = None
G
gongweibao 已提交
336

1
123malin 已提交
337 338 339 340 341 342 343 344 345 346
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

W
Wu Yi 已提交
347 348 349 350
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
351 352
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
353 354 355 356 357 358
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
359 360
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
361 362 363

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
364 365 366 367 368 369 370 371 372

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
373 374 375 376
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
377 378 379 380 381
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
382 383 384 385 386
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
387 388 389 390 391 392 393
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
394 395 396 397 398
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

399 400 401 402 403 404 405 406 407 408 409 410
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
411
        elif collective_mode != "single_process_multi_thread":
412 413
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
414 415
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
416 417 418 419 420 421 422 423 424 425
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
426
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
427
        elif collective_mode == 'local_sgd':
428
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
429 430
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
431 432 433 434 435 436 437 438 439 440 441
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
442
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
443
        sparse_update_ops = []
T
tangwei12 已提交
444
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
445 446
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
447
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
448 449 450
                sparse_update_ops.append(op)
        return sparse_update_ops

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
526

527 528
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
529 530 531 532 533 534

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
535

536 537 538 539 540
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
541
                  sync_mode=True,
W
Wu Yi 已提交
542 543
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
544
        """
545
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
546 547 548 549 550 551

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
552 553
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
554 555
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
556 557 558
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
559
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
560 561
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
562 563 564
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
565 566 567 568 569 570 571 572 573 574 575

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
576 577 578
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
579 580
        if startup_program is None:
            startup_program = default_startup_program()
581
        self.origin_program = program
W
Wu Yi 已提交
582 583
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
584

W
Wu Yi 已提交
585 586
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
587
            self.origin_program._trainers_endpoints = trainers.split(",")
588 589
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
590 591 592 593 594
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
595
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
596 597 598 599 600 601 602 603 604 605 606
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
607 608 609 610
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
611 612
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
613 614
            return

615 616 617 618 619 620 621 622 623 624 625
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

626
        self.trainer_num = trainers
627
        self.sync_mode = sync_mode
628 629 630
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
631
        self.vars_overview = VarsDistributed()
632 633
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
634
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
635 636
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
637
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
638
        self.grad_name_to_param_name = dict()
639 640
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
641
            self.grad_name_to_param_name[grad_var.name] = param_var.name
642

Q
Qiao Longfei 已提交
643
        # get all sparse update ops
Q
Qiao Longfei 已提交
644
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
645
            self.origin_program)
Q
Qiao Longfei 已提交
646
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
647
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
648
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
649

T
tangwei12 已提交
650 651 652
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
653
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
654 655 656
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

657
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
658
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
659
        self._init_splited_vars()
660

G
gongweibao 已提交
661
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
662
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
663
        send_vars = []
664 665 666 667 668 669

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
670
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
671

G
gongweibao 已提交
672
        if not self.config.slice_var_up:
673 674
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
675

676
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
677

678
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
679
            eplist = ps_dispatcher.dispatch(splited_vars)
680

G
gongweibao 已提交
681
            if not self.config.slice_var_up:
682 683
                assert (len(splited_vars) == 1)

684
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
685
            if len(splited_vars) == 1:
686
                splited_grad_varname = splited_vars[0].name
687 688
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
689

Y
Yancey1989 已提交
690
            elif len(splited_vars) > 1:
691
                orig_var = program.global_block().vars[splited_grad_varname]
692 693
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
694

Q
Qiao Longfei 已提交
695 696 697 698
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
699 700
            else:
                AssertionError("Can not insert the send op by original "
701
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
702

703 704 705 706 707 708 709
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
710 711
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
712
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
713

Q
Qiao Longfei 已提交
714 715 716 717 718 719 720 721 722 723 724
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
725 726 727 728
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
729
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
730
                index=index + 1,
731
                type="send",
Q
Qiao Longfei 已提交
732
                inputs={"X": send_input_vars},
733
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
734 735
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
736 737
                    "sections": sections,
                    "send_varnames": send_varnames,
738
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
739 740 741
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
742
                    ]
Y
Yancey1989 已提交
743
                })
Y
update  
Yancey1989 已提交
744 745
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
746 747

        if self.sync_mode:
748
            fetch_barrier_input = []
W
Wu Yi 已提交
749 750
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
751 752 753 754
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
755
            input_deps = list(self.grad_name_to_send_dummy_out.values())
756

Y
Yancey1989 已提交
757 758
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
759
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
760
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
761 762
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
763
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
764
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
765
                })
766
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
792

G
gongweibao 已提交
793
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
794
        recv_vars = []
Y
update  
Yancey1989 已提交
795
        for _, var in enumerate(send_vars):
796
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
797
        ps_dispatcher.reset()
Y
Yancey1989 已提交
798 799
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
800
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
801 802
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
803

804 805 806 807
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

808 809
        need_sparse_update_params = {}

Y
Yancey1989 已提交
810
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
811
        all_recv_outputs = []
812
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
813
            eps = []
Q
Qiao Longfei 已提交
814
            table_names = []
Y
Yancey1989 已提交
815 816 817
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
818
                table_names.append(var.name)
W
Wu Yi 已提交
819 820 821 822
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
823
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
824
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
825

W
Wu Yi 已提交
826 827 828 829 830 831 832 833 834
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
835
            if param_varname in self.sparse_param_to_height_sections:
836 837 838 839 840
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

841
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
842
            else:
Q
Qiao Longfei 已提交
843 844 845
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
846
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
847
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
848
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
849

Q
Qiao Longfei 已提交
850 851 852 853 854 855
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
856
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
857 858 859
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
860
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
861
                    })
862 863
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
864

865 866
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
867
        if self.sync_mode:
W
Wu Yi 已提交
868
            # form a WAW dependency
Q
qiaolongfei 已提交
869 870
            program.global_block().append_op(
                type="fetch_barrier",
871
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
872
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
873 874
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
875
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
876 877
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
878

879 880
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
881
            if param_varname not in self.sparse_param_to_height_sections:
882 883
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
884 885 886 887 888 889 890 891
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
892

G
gongweibao 已提交
893 894
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

895
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
896 897
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
898
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
899

900 901 902
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
975
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
976
        """
C
Chengmo 已提交
977 978 979 980 981 982 983 984 985
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
986 987 988

        Returns:
            Program: trainer side program.
989 990 991 992 993 994 995 996 997 998 999 1000

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1001
        """
T
typhoonzero 已提交
1002
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1003
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1004

T
tangwei12 已提交
1005 1006 1007 1008
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1009 1010
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1011
        self._delete_trainer_optimizer(is_startup=False)
1012

1013
        self.origin_program.__str__()
T
tangwei12 已提交
1014
        self.startup_program.__str__()
G
gongweibao 已提交
1015

W
Wu Yi 已提交
1016 1017 1018
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1019
        return self.origin_program
T
typhoonzero 已提交
1020

W
Wu Yi 已提交
1021
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1022 1023 1024 1025
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1026
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1027
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1028 1029 1030 1031

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1032
        startup_program = self.startup_program
G
gongweibao 已提交
1033 1034 1035

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1036 1037 1038 1039
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1040

M
minqiyang 已提交
1041
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1042 1043
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1064
                inputs={"X": []},
G
gongweibao 已提交
1065 1066 1067
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1068
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1069 1070 1071
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1072 1073
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1074 1075 1076
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1077
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1078 1079
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1080
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1081 1082 1083
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1084
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1085 1086
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1087
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1088 1089
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1090
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1091
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1102 1103 1104 1105 1106 1107 1108 1109
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1110 1111
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1112 1113 1114 1115 1116 1117
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1118

Y
yi.wu 已提交
1119 1120
        Args:
            endpoint (str): current parameter server endpoint.
1121

Y
yi.wu 已提交
1122 1123
        Returns:
            Program: the program for current parameter server to run.
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1138
        """
Y
yi.wu 已提交
1139 1140 1141 1142
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1143 1144 1145
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1146 1147
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1148
        pserver_program.random_seed = self.origin_program.random_seed
1149 1150
        pserver_program._copy_dist_param_info_from(self.origin_program)

1151
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1152 1153 1154 1155 1156 1157 1158 1159
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1160 1161 1162 1163 1164
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1174
            if self.sync_mode and self.trainer_num > 1:
1175
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1185

Q
qiaolongfei 已提交
1186
        # step 3
1187
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1188 1189 1190
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1191
        # step 3.2
T
typhoonzero 已提交
1192 1193 1194 1195
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1196 1197
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1198
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1199
        # step 3.3
W
Wu Yi 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1218
        # Iterate through the ops, and if an op and the optimize ops
1219
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1220
        # append it into the sub program.
T
typhoonzero 已提交
1221 1222 1223

        global_ops = []

1224 1225 1226
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1227 1228
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1229
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1230
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1231 1232
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1233
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1234
                self._append_pserver_non_opt_ops(block, op)
1235

Y
Yancey1989 已提交
1236
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1237 1238 1239 1240 1241 1242 1243 1244
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1245
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1246 1247 1248

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1249
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1250 1251

            # clone ops
Y
Yancey1989 已提交
1252 1253
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1254
                # clone sub_block of op
Y
Yancey1989 已提交
1255
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1256 1257

            # reset the block of op
W
Wu Yi 已提交
1258
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1259

1260
        # append lr decay ops to the child block if exists
1261
        lr_ops = self._get_lr_ops()
1262 1263
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1264 1265

        lr_decay_block_id = -1
1266
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1267
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1268
                pserver_program.num_blocks - 1)
1269
            optimize_blocks.append(lr_decay_block)
1270
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1271
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1272
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1273 1274
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1275
            lr_decay_block_id = lr_decay_block.idx
1276

T
typhoonzero 已提交
1277
        # append op to the current block
Q
qiaolongfei 已提交
1278
        grad_to_block_id = []
Q
qiaolongfei 已提交
1279
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1280
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1281
            per_opt_block = pserver_program._create_block(pre_block_idx)
1282
            optimize_blocks.append(per_opt_block)
1283
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1284
            # append grad merging ops before clip and weight decay
1285 1286
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1287
            for _, op in enumerate(self.optimize_ops):
1288
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1289
                # merged_var should be the input var name of L2Decay
1290 1291 1292
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1293 1294 1295
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1296 1297 1298 1299 1300 1301
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1302
                            op not in global_ops:
1303 1304 1305 1306 1307
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1308

1309
        # dedup grad to ids list
W
Wu Yi 已提交
1310
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1311
        # append global ops
1312
        if global_ops:
W
Wu Yi 已提交
1313
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1314
                pserver_program.num_blocks - 1)
1315
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1316
            for glb_op in global_ops:
X
Xi Chen 已提交
1317
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1318
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1319

1320
        # process distributed lookup_table
Q
qiaolongfei 已提交
1321
        prefetch_var_name_to_block_id = []
1322 1323
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1324
            table_opt_block = self._create_table_optimize_block(
1325
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1326
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1327
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1328
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1329 1330
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1331

T
tangwei12 已提交
1332
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1333 1334
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1335

1336
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1337 1338
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1339 1340 1341 1342 1343 1344
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1345
        attrs = {
1346
            "optimize_blocks": optimize_blocks,
1347
            "endpoint": endpoint,
1348
            "pserver_id": self.pserver_endpoints.index(endpoint),
1349
            "Fanin": self.trainer_num,
1350
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1351
            "grad_to_block_id": grad_to_block_id,
1352
            "sparse_grad_to_param": sparse_grad_to_param,
1353
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1354 1355 1356 1357
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
            "rpc_prefetch_thread_num":
            self.server_config._rpc_prefetch_thread_num
1358
        }
T
tangwei12 已提交
1359 1360

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1361
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1362 1363
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1364

T
tangwei12 已提交
1365 1366 1367 1368
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1369 1370 1371 1372 1373
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1374
            attrs=attrs)
1375

W
Wu Yi 已提交
1376
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1377 1378
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1379 1380
        return pserver_program

W
Wu Yi 已提交
1381 1382 1383
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1384 1385
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1386 1387 1388

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1389

W
Wu Yi 已提交
1390 1391
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1406 1407
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1408 1409
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1410 1411
        return pserver_prog, pserver_startup

1412 1413
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1414
                            pserver_program=None,
1415
                            startup_program=None):
T
typhoonzero 已提交
1416
        """
W
Wu Yi 已提交
1417 1418
        **Deprecated**

T
typhoonzero 已提交
1419 1420 1421
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1422 1423 1424

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1425 1426
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1427
                when initalizing
1428

Y
yi.wu 已提交
1429 1430
        Returns:
            Program: parameter server side startup program.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1446 1447
        """
        s_prog = Program()
W
Wu Yi 已提交
1448
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1449
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1461
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1462
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1463
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1464 1465 1466 1467
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1468
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1469 1470
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1481 1482

            if op_on_pserver:
1483 1484 1485
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1486
                if op.type in [
1487 1488
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1489
                ]:
W
Wu Yi 已提交
1490
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1491 1492 1493 1494
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1495
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1505

T
typhoonzero 已提交
1506 1507
        return s_prog

1508 1509
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1510
        block_suffix = "block"
1511 1512 1513
        block_idx = 0
        offset = 0
        is_slice = False
1514

1515
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1516

1517 1518
        if not block_name:
            return is_slice, block_idx, offset
1519

1520 1521 1522 1523
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1524 1525 1526 1527 1528
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1554 1555 1556 1557
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1595

Y
yi.wu 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1635
    def _init_splited_vars(self):
Y
yi.wu 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1659
        if self.config.slice_var_up:
Y
yi.wu 已提交
1660 1661
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1662 1663 1664
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1665
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1666 1667
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1668 1669 1670
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1671 1672 1673 1674
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1675 1676
        assert (len(grad_blocks) == len(param_blocks))

1677
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1678 1679
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1696
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1697 1698 1699 1700
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1701
        # dict(grad_splited_var -> param_splited_var)
1702
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1703 1704 1705
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1706
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1707
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1708 1709

        # create mapping of endpoint -> split var to create pserver side program
1710
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1720
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1721 1722
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1723
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1724
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1725 1726
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1727 1728
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1729 1730 1731 1732 1733 1734

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1735 1736
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1737
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1738 1739 1740
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1741 1742
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1743 1744
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1745 1746 1747
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1748
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1749
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1750 1751

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1752
                    self.all_out_emb_vars.append(out_var)
1753 1754

                    # delete lookup_table_op
1755
                    delete_ops(program.global_block(), [op])
1756 1757 1758
                    # break for loop
                    break

S
seiriosPlus 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1805
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1806
        # 2. add split_ids_op and send_op to send gradient to pservers
1807

1808 1809
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1810
        table_grad_name = grad_var_name(self.table_name)
1811 1812 1813 1814
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1815
                program.global_block()._insert_op(
1816 1817 1818 1819 1820
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1821 1822
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1823
                program.global_block()._insert_op(
1824
                    index=op_index + 2,
1825
                    type="send",
1826
                    inputs={'X': self.trainer_side_table_grad_list},
1827 1828 1829 1830 1831
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1832 1833
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1834
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1835 1836 1837 1838 1839
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1840
                    })
1841 1842 1843 1844 1845 1846
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1847
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1873
        return prefetch_var_name_to_block_id
1874 1875

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1876
                                     pre_block_idx, grad_to_block_id):
1877
        # STEP: create table optimize block
1878
        table_opt_block = pserver_program._create_block(pre_block_idx)
1879
        # create table param and grad var in pserver program
1880 1881
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1882 1883 1884
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1885 1886
        ][0]

Y
Yancey1989 已提交
1887 1888
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1889

T
tangwei12 已提交
1890
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1891 1892
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1893 1894 1895
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1896 1897
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1898
            shape=table_shape,
Y
Yancey1989 已提交
1899 1900 1901
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1902

1903 1904
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1905
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1906
            self.origin_program.global_block().vars[grad_var_name(
1907
                self.table_name)])
1908

1909 1910 1911
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1912

1913 1914 1915
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1916
            pserver_side_table_grad_list = [
1917 1918 1919 1920 1921 1922 1923 1924 1925
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1926
            # append sum op for pserver_side_table_grad_list
1927 1928
            table_opt_block.append_op(
                type="sum",
1929
                inputs={"X": pserver_side_table_grad_list},
1930 1931
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1932 1933
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1934
            origin_grad_name = grad_var.name
1935 1936
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1937 1938
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1939
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1940
            grad_var = pserver_program.global_block()._rename_var(
1941
                origin_grad_name, splited_grad_name)
1942 1943 1944 1945 1946 1947 1948

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1949
        # only support sgd now
1950 1951 1952
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1953
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1954

1955 1956 1957
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1958 1959
        return table_opt_block

T
tangwei12 已提交
1960 1961 1962 1963 1964
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1965
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1966
            name="kLookupTablePath",
T
tangwei12 已提交
1967 1968
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1969

W
Wu Yi 已提交
1970
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1971
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1972 1973 1974 1975
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1976
            attrs={'file_path': "none"})
T
tangwei12 已提交
1977 1978 1979

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1980 1981 1982 1983 1984
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1985
        Create vars for each split.
T
typhoonzero 已提交
1986 1987
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1988 1989 1990 1991
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1992
        Returns:
1993
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1994
                from original var name to each var split.
T
typhoonzero 已提交
1995
        """
1996 1997

        # varname->[(block_id, current_block_size)]
1998
        block_map = collections.OrderedDict()
1999

2000
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2001 2002
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2003
            if varname not in block_map:
T
typhoonzero 已提交
2004
                block_map[varname] = []
2005
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2006

M
minqiyang 已提交
2007
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
2008
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
2009
            if len(splited) == 1:
2010
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2011
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2012
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
2013
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
2014 2015 2016 2017 2018
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
2019
                continue
T
typhoonzero 已提交
2020
            var_mapping[varname] = []
T
typhoonzero 已提交
2021 2022 2023 2024
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2025

T
typhoonzero 已提交
2026
            for i, block in enumerate(splited):
T
typhoonzero 已提交
2027
                size = block[1]
M
minqiyang 已提交
2028
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2029 2030 2031
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2032
                new_var_name = ""
2033
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
2034
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
2035
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
2036 2037
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
2038
                                   (varname, i)
T
typhoonzero 已提交
2039
                var = program.global_block().create_var(
T
typhoonzero 已提交
2040 2041
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2042
                    dtype=orig_var.dtype,
2043
                    type=orig_var.type,
T
typhoonzero 已提交
2044
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2045
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2046
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2047
        return var_mapping
T
done  
typhoonzero 已提交
2048

2049
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2050 2051 2052 2053 2054 2055
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2056
            persistable=persistable)
T
done  
typhoonzero 已提交
2057

Q
Qiao Longfei 已提交
2058 2059 2060 2061 2062 2063 2064
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2065
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2066 2067
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2068
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2069
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2070
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2071 2072
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2073
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2074 2075 2076 2077
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2078 2079 2080 2081
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2082
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2083
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2084 2085 2086 2087
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2088
                attrs={
Q
Qiao Longfei 已提交
2089
                    "sections": height_sections,
2090 2091
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2092 2093 2094
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2095

T
typhoonzero 已提交
2096 2097 2098 2099
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2100
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2113
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2114 2115
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2116 2117
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2118
                return param_shape
2119 2120 2121
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2122 2123 2124
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2125 2126
        elif op_type == "sgd":
            pass
2127 2128 2129 2130
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2131 2132
        return orig_shape

2133 2134
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2135
        orig_var_name = ""
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2146
        else:
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2169
            return None
2170 2171 2172 2173
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2174
        else:
2175
            merged_var_name = orig_varname
2176 2177

        merged_var = pserver_block.vars[merged_var_name]
2178 2179 2180
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2181
            for i in range(self.trainer_num):
2182
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2183
                                   (merged_var_name, i)
2184 2185 2186 2187
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2188 2189
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2190 2191 2192 2193 2194
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2195
        return merged_var
T
typhoonzero 已提交
2196

W
Wu Yi 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2259
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2260 2261
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2262
        program = optimize_block.program
T
typhoonzero 已提交
2263
        pserver_block = program.global_block()
2264
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2275 2276 2277 2278
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2279
        for key in opt_op.input_names:
T
typhoonzero 已提交
2280
            if key == "Grad":
W
Wu Yi 已提交
2281 2282 2283
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2294
            elif key == "Param":
W
Wu Yi 已提交
2295
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2296 2297
                if not param_block:
                    return
T
typhoonzero 已提交
2298
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2299
                    name=param_block.name,
T
typhoonzero 已提交
2300
                    persistable=True,
T
typhoonzero 已提交
2301 2302 2303
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2304
            elif key == "LearningRate":
2305
                # learning rate variable has already be created by non-optimize op,
2306
                # don't create it once again.
2307
                lr_varname = opt_op.input(key)[0]
2308
                if lr_varname in pserver_block.vars:
2309 2310 2311 2312 2313 2314 2315 2316 2317
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2318

T
typhoonzero 已提交
2319
        for key in opt_op.input_names:
2320
            new_shape = None
2321 2322 2323 2324
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2325
                continue
2326
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2327
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2328
            # update accumulator variable shape
2329 2330
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2331
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2332 2333 2334 2335 2336
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2337

2338
        # change output's ParamOut variable
2339 2340
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2341
        outputs["ParamOut"] = new_inputs["Param"]
2342
        optimize_block.append_op(
T
typhoonzero 已提交
2343 2344
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2345
            outputs=outputs,
G
gongweibao 已提交
2346
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2347

2348 2349 2350 2351 2352 2353
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2365
        grad_block = None
M
minqiyang 已提交
2366
        for _, g in six.iteritems(var_dict):
2367
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2368
                # skip per trainer vars
2369
                if g.name.find(".trainer_") == -1:
2370
                    # only param or grads have splited blocks
2371 2372
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2373 2374
                        grad_block = g
                        break
2375 2376
        return grad_block

Q
Qiyang Min 已提交
2377 2378 2379
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2380
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2381 2382 2383 2384
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2385
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2386 2387 2388

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2389
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2390 2391 2392 2393
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2394
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2395

Y
Yancey1989 已提交
2396
        return block.append_op(
G
gongweibao 已提交
2397
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2398 2399

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2400
        program = optimize_block.program
2401
        # Append the ops for parameters that do not need to be optimized/updated
2402 2403
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2404
        for key, varlist in six.iteritems(inputs):
2405 2406
            if not isinstance(varlist, list):
                varlist = [varlist]
2407 2408 2409
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2410
                # for inputs/outputs
2411
                grad_block = self._get_pserver_grad_param_var(
2412 2413
                    var, program.global_block().vars)
                if grad_block:
2414
                    varlist[i] = grad_block
2415
                elif var.name not in program.global_block().vars:
2416 2417 2418 2419 2420
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2421

2422 2423
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2424
        for key, varlist in six.iteritems(outputs):
2425 2426
            if not isinstance(varlist, list):
                varlist = [varlist]
2427 2428 2429
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2430 2431
                    var, program.global_block().vars)
                if grad_block:
2432
                    varlist[i] = grad_block
2433
                elif var.name not in program.global_block().vars:
2434 2435 2436 2437 2438
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2439

Y
Yancey1989 已提交
2440
        return optimize_block.append_op(
T
typhoonzero 已提交
2441
            type=opt_op.type,
T
typhoonzero 已提交
2442 2443
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2444
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2445

2446 2447 2448 2449
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2450
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2451
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2452 2453 2454 2455 2456 2457
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2458 2459
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2460 2461 2462 2463 2464 2465
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2466
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2467
        if "Param" in op.input_names and \
T
tangwei12 已提交
2468
                "LearningRate" in op.input_names:
2469 2470 2471 2472 2473 2474 2475
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2476
        if op.input("Param")[0] in param_names:
2477 2478 2479
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2480
                param = op.input("Param")[0]
T
typhoonzero 已提交
2481
                if same_or_split_var(n, param) and n != param:
2482 2483 2484
                    return True
            return False

T
typhoonzero 已提交
2485
    def _get_input_map_from_op(self, varmap, op):
2486
        """Returns a dict from op input name to the vars in varmap."""
2487
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2499
        """Returns a dict from op output name to the vars in varmap."""
2500
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2510 2511

    def _get_lr_ops(self):
2512 2513
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2514
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2515 2516 2517 2518
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2565 2566 2567 2568 2569
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2570 2571 2572 2573
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2574
            if self._is_optimizer_op(op):
2575 2576 2577 2578
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2579
        block = self.origin_program.global_block()
2580 2581 2582 2583 2584
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2585

2586 2587 2588 2589 2590
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2591
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2592 2593 2594 2595 2596 2597
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2598 2599
                    # we only need to append op for once
                    break
2600
        return lr_ops
Y
Yancey1989 已提交
2601

W
Wu Yi 已提交
2602 2603 2604 2605 2606
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2607 2608
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2609 2610 2611
            return True
        return False

Y
Yancey1989 已提交
2612
    def _get_optimize_pass(self):
2613
        """
2614
        Get optimizer operators, parameters and gradients from origin_program
2615 2616
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2617
            params_grads (dict): parameter->gradient.
2618
        """
Y
Yancey1989 已提交
2619 2620 2621
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2622 2623
        # tmp set to dedup
        optimize_params = set()
2624
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2625
        for op in block.ops:
W
Wu Yi 已提交
2626
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
                # delete clip op from opt_ops when run in Parameter Server mode 
                if OP_NAME_SCOPE in op.all_attrs(
                ) and CLIP_OP_NAME_SCOPE in op.attr(
                        OP_NAME_SCOPE
                ) and self.config.mode != "nccl2" and self.config.mode != "collective":
                    op._set_attr(
                        "op_role",
                        int(core.op_proto_and_checker_maker.OpRole.Backward))
                    continue
Y
Yancey1989 已提交
2637
                opt_ops.append(op)
2638 2639 2640 2641 2642 2643
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2644 2645
                        params_grads.append([
                            origin_var_dict[param_name],
2646
                            origin_var_dict[grad_name]
2647
                        ])
Y
Yancey1989 已提交
2648 2649
            else:
                pass
C
Chengmo 已提交
2650 2651 2652 2653 2654 2655

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2656
        return opt_ops, params_grads
C
Chengmo 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

    def _get_distribute_update_vars(self):
        #TODO(chengmo): find more powerful and simple way to deal with these special situation
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads