distribute_transpiler.py 96.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165 166
    # split the send recv var in runtime
    runtime_split_send_recv = False
167
    sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

176
    # if mode is collective
177
    # supported modes: grad_allreduce, local_sgd
178 179
    collective_mode = None

G
gongweibao 已提交
180

Y
gen rst  
yi.wu 已提交
181
class DistributeTranspiler(object):
Y
yi.wu 已提交
182 183 184 185
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
186
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
187

W
Wu Yi 已提交
188 189 190 191 192 193 194 195 196
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
197 198 199 200

    Examples:
        .. code-block:: python

201 202 203 204 205 206 207 208 209 210
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
211 212 213 214 215 216
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
217
            role = "PSERVER"
T
Tink_Y 已提交
218 219 220 221 222 223
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
224
                                                                pserver_program)
T
Tink_Y 已提交
225 226 227 228
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
229 230
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
231 232
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
233
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
234
            t = fluid.DistributeTranspiler(config=config)
235
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
236
            exe = fluid.ParallelExecutor(
237 238 239
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
240 241
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
242
    """
Y
Yancey1989 已提交
243

G
gongweibao 已提交
244 245 246 247 248 249 250 251 252
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

253 254 255
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
256 257 258
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
259 260 261 262
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
263 264
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
265 266 267 268 269 270
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
271 272
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
273 274 275

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
276 277 278 279 280 281 282 283 284

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
285 286 287 288
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
289 290 291 292 293
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
294 295 296 297 298
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
299 300 301 302 303 304 305
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
306 307 308 309 310
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
337
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
338
        elif collective_mode == 'local_sgd':
339
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
340 341 342 343 344 345 346 347 348 349 350
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
351
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
352
        sparse_update_ops = []
353
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
354 355
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
356
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
357 358 359
                sparse_update_ops.append(op)
        return sparse_update_ops

360 361 362 363 364 365 366
    def _update_remote_sparse_update_op(self, program, param_varname,
                                        height_sections, endpoints,
                                        table_names):

        ops = []
        op_type = ""

Q
Qiao Longfei 已提交
367
        for op in self.sparse_update_ops:
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            if param_varname in op.input_arg_names and op_type == "":
                op_type = op.type
                ops.append(op)

            elif param_varname in op.input_arg_names and op_type == op.type:
                ops.append(op)

        if op_type == "lookup_table":
            all_ops = program.global_block().ops
            op_idxs = [all_ops.index(op) for op in ops]
            inputs = [
                program.global_block().vars[op.input("Ids")[0]] for op in ops
            ]
            w = program.global_block().vars[ops[0].input("W")[0]]
            padding_idx = ops[0].attr("padding_idx")
            outputs = [
                program.global_block().vars[op.output("Out")[0]] for op in ops
            ]

            for idx in op_idxs[::-1]:
                program.global_block()._remove_op(idx)

            program.global_block()._insert_op(
                index=op_idxs[0],
                type="distributed_lookup_table",
                inputs={"Ids": inputs,
                        'W': w},
                outputs={"Outputs": outputs},
                attrs={
                    "table_names": table_names,
                    "height_sections": height_sections,
                    "endpoints": endpoints,
                    "padding_idx": padding_idx,
                    "trainer_id": self.trainer_id
                })
Q
Qiao Longfei 已提交
403 404 405 406 407 408

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
409

410 411 412 413 414
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
415
                  sync_mode=True,
W
Wu Yi 已提交
416 417
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
418
        """
419
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
420 421 422 423 424 425

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
426 427
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
428 429
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
430 431 432
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
433
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
434 435
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
436 437 438
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
439 440 441 442 443 444 445 446 447 448 449

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
450 451 452
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
453 454
        if startup_program is None:
            startup_program = default_startup_program()
455
        self.origin_program = program
W
Wu Yi 已提交
456 457
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
458

W
Wu Yi 已提交
459 460
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
461
            self.origin_program._trainers_endpoints = trainers.split(",")
462 463
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
464 465 466 467 468
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
469
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
470 471 472 473 474 475 476 477 478 479 480
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
481 482 483 484
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
485 486
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
487 488
            return

489 490 491 492 493 494 495 496 497 498 499
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

500
        self.trainer_num = trainers
501
        self.sync_mode = sync_mode
502 503 504
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
505
        self.vars_overview = VarsDistributed()
506 507
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
508
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
509 510
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
511
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
512
        self.grad_name_to_param_name = dict()
513 514
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
515
            self.grad_name_to_param_name[grad_var.name] = param_var.name
516

Q
Qiao Longfei 已提交
517
        # get all sparse update ops
Q
Qiao Longfei 已提交
518
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
519
            self.origin_program)
Q
Qiao Longfei 已提交
520
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
521 522
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
523 524 525
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
526
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
527 528 529
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

530
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
531
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
532
        self._init_splited_vars()
533

G
gongweibao 已提交
534
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
535
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
536
        send_vars = []
537 538 539 540 541 542

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
543
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
544

G
gongweibao 已提交
545
        if not self.config.slice_var_up:
546 547
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
548

549
        self.grad_name_to_send_dummy_out = dict()
550
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
551
            eplist = ps_dispatcher.dispatch(splited_vars)
552

G
gongweibao 已提交
553
            if not self.config.slice_var_up:
554 555
                assert (len(splited_vars) == 1)

556
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
557
            if len(splited_vars) == 1:
558
                splited_grad_varname = splited_vars[0].name
559 560
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
561

Y
Yancey1989 已提交
562
            elif len(splited_vars) > 1:
563
                orig_var = program.global_block().vars[splited_grad_varname]
564 565
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
566

Q
Qiao Longfei 已提交
567 568 569 570
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
571 572
            else:
                AssertionError("Can not insert the send op by original "
573
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
574

575 576 577 578 579 580 581
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
582 583
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
584
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
585

Q
Qiao Longfei 已提交
586 587 588 589 590 591 592 593 594 595 596
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
597 598 599 600
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
601
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
602
                index=index + 1,
603
                type="send",
Q
Qiao Longfei 已提交
604
                inputs={"X": send_input_vars},
605
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
606 607
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
608 609
                    "sections": sections,
                    "send_varnames": send_varnames,
610
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
611 612 613
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
614
                    ]
Y
Yancey1989 已提交
615
                })
Y
update  
Yancey1989 已提交
616 617
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
618 619

        if self.sync_mode:
W
Wu Yi 已提交
620 621
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
622 623 624 625
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
626
            input_deps = list(self.grad_name_to_send_dummy_out.values())
627

Y
Yancey1989 已提交
628 629
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
630
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
631
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
632 633
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
634
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
635
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
636
                })
Y
Yancey1989 已提交
637

G
gongweibao 已提交
638
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
639
        recv_vars = []
Y
update  
Yancey1989 已提交
640
        for _, var in enumerate(send_vars):
641
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
642
        ps_dispatcher.reset()
Y
Yancey1989 已提交
643 644
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
645
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
646 647
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
648

649 650 651 652
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
653
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
654
        all_recv_outputs = []
655
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
656
            eps = []
Q
Qiao Longfei 已提交
657
            table_names = []
Y
Yancey1989 已提交
658 659 660
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
661
                table_names.append(var.name)
W
Wu Yi 已提交
662 663 664 665
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
666
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
667
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
668

W
Wu Yi 已提交
669 670 671 672 673 674 675 676 677
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
678
            if param_varname in self.sparse_param_to_height_sections:
679 680 681 682 683
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
684 685
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
686
                self._update_remote_sparse_update_op(
687
                    program, param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
688
            else:
Q
Qiao Longfei 已提交
689 690 691
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
692
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
693
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
694
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
695

Q
Qiao Longfei 已提交
696 697 698 699 700 701
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
702
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
703 704 705
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
706
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
707
                    })
T
typhoonzero 已提交
708

Q
qiaolongfei 已提交
709
        if self.sync_mode:
W
Wu Yi 已提交
710
            # form a WAW dependency
Q
qiaolongfei 已提交
711 712 713
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
714
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
715 716
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
717
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
718 719
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
720

721
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
722 723
            if len(splited_var) <= 1:
                continue
724
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
725
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
726 727 728 729 730 731 732 733 734
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
735

G
gongweibao 已提交
736 737
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

738
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
739 740
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
741
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
742

743 744 745
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
746
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
747 748 749 750 751
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
752 753 754 755 756 757 758 759 760 761 762 763

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
764
        """
T
typhoonzero 已提交
765
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
766
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
767

T
typhoonzero 已提交
768
        lr_ops = self._get_lr_ops()
769
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
770 771
        delete_ops(self.origin_program.global_block(), lr_ops)

772 773
        # delete table init op
        if self.has_distributed_lookup_table:
774 775 776
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
777 778
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
779 780 781 782 783
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
784
            table_init_op = table_param_init_op[0]
785 786 787 788 789 790
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
791

792
        self.origin_program.__str__()
G
gongweibao 已提交
793

W
Wu Yi 已提交
794 795 796
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

797
        return self.origin_program
T
typhoonzero 已提交
798

W
Wu Yi 已提交
799
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
800 801 802 803
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
804
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
805
            eplist (list): A list of strings indicating
G
gongweibao 已提交
806 807 808 809

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
810
        startup_program = self.startup_program
G
gongweibao 已提交
811 812 813 814

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
815
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
836
                inputs={"X": []},
G
gongweibao 已提交
837 838 839
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
840
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
841 842 843
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
844 845
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
846 847 848
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
849
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
850 851
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
852
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
853 854 855
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
856
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
857
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
858 859
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
860
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
861
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
862 863 864 865 866 867 868 869 870 871
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
872 873 874 875 876 877 878 879
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
880 881
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
882
        Get parameter server side program.
883

Y
yi.wu 已提交
884 885
        Args:
            endpoint (str): current parameter server endpoint.
886

Y
yi.wu 已提交
887 888
        Returns:
            Program: the program for current parameter server to run.
889 890 891 892 893 894 895 896 897 898 899 900 901 902

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
903
        """
Y
yi.wu 已提交
904 905 906 907
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
908 909 910
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
911 912
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
913
        pserver_program.random_seed = self.origin_program.random_seed
914 915
        pserver_program._copy_dist_param_info_from(self.origin_program)

916
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
917 918 919 920 921 922 923 924
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
925 926 927 928 929
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
930 931 932 933 934 935 936 937 938
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
939
            if self.sync_mode and self.trainer_num > 1:
940
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
941 942 943 944 945 946 947 948 949
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
950

Q
qiaolongfei 已提交
951
        # step 3
952
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
953 954 955
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
956
        # step 3.2
T
typhoonzero 已提交
957 958 959 960
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
961 962
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
963
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
964
        # step 3.3
W
Wu Yi 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
983
        # Iterate through the ops, and if an op and the optimize ops
984
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
985
        # append it into the sub program.
T
typhoonzero 已提交
986 987 988

        global_ops = []

989 990 991
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
992 993
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
994
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
995
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
996 997
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
998
            elif op not in lr_ops:
Q
Qiyang Min 已提交
999
                self._append_pserver_non_opt_ops(block, op)
1000

Y
Yancey1989 已提交
1001
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1002 1003 1004 1005 1006 1007 1008 1009
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1010
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1011 1012 1013

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1014
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1015 1016

            # clone ops
Y
Yancey1989 已提交
1017 1018
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1019
                # clone sub_block of op
Y
Yancey1989 已提交
1020
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1021 1022

            # reset the block of op
W
Wu Yi 已提交
1023
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1024

1025
        # append lr decay ops to the child block if exists
1026
        lr_ops = self._get_lr_ops()
1027 1028
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1029
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1030
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1031
                pserver_program.num_blocks - 1)
1032
            optimize_blocks.append(lr_decay_block)
1033
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1034
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1035
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1036 1037
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1038

T
typhoonzero 已提交
1039
        # append op to the current block
Q
qiaolongfei 已提交
1040
        grad_to_block_id = []
Q
qiaolongfei 已提交
1041
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1042
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1043
            per_opt_block = pserver_program._create_block(pre_block_idx)
1044
            optimize_blocks.append(per_opt_block)
1045
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1046
            # append grad merging ops before clip and weight decay
1047 1048
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1049
            for _, op in enumerate(self.optimize_ops):
1050
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1051
                # merged_var should be the input var name of L2Decay
1052 1053 1054
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1055 1056 1057
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1058 1059 1060 1061 1062 1063
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1064
                            op not in global_ops:
1065 1066 1067 1068 1069
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1070

1071
        # dedup grad to ids list
W
Wu Yi 已提交
1072
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1073
        # append global ops
1074
        if global_ops:
W
Wu Yi 已提交
1075
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1076
                pserver_program.num_blocks - 1)
1077
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1078
            for glb_op in global_ops:
X
Xi Chen 已提交
1079
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1080
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1081

1082
        # process distributed lookup_table
Q
qiaolongfei 已提交
1083
        prefetch_var_name_to_block_id = []
1084 1085
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1086
            table_opt_block = self._create_table_optimize_block(
1087
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1088
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1089
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1090
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1091 1092
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1093

T
tangwei12 已提交
1094
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1095 1096
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1097

1098
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1099 1100
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1101 1102 1103 1104 1105 1106
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1107
        attrs = {
1108
            "optimize_blocks": optimize_blocks,
1109 1110 1111
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1112
            "grad_to_block_id": grad_to_block_id,
1113
            "sparse_grad_to_param": sparse_grad_to_param,
1114
        }
T
tangwei12 已提交
1115 1116

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1117
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1118 1119
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1120

T
tangwei12 已提交
1121 1122 1123 1124
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1125 1126 1127 1128 1129
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1130
            attrs=attrs)
1131

W
Wu Yi 已提交
1132
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1133 1134
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1135 1136
        return pserver_program

W
Wu Yi 已提交
1137 1138 1139 1140 1141 1142
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1143

W
Wu Yi 已提交
1144 1145
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1160 1161
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1162 1163
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1164 1165
        return pserver_prog, pserver_startup

1166 1167
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1168
                            pserver_program=None,
1169
                            startup_program=None):
T
typhoonzero 已提交
1170
        """
W
Wu Yi 已提交
1171 1172
        **Deprecated**

T
typhoonzero 已提交
1173 1174 1175
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1176 1177 1178

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1179 1180
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1181
                when initalizing
1182

Y
yi.wu 已提交
1183 1184
        Returns:
            Program: parameter server side startup program.
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1200 1201
        """
        s_prog = Program()
W
Wu Yi 已提交
1202
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1203
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1215
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1216
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1217
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1218 1219 1220 1221
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1222
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1223 1224
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1235 1236

            if op_on_pserver:
1237 1238 1239
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1240
                if op.type in [
1241 1242
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1243
                ]:
W
Wu Yi 已提交
1244
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1245 1246 1247 1248
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1249
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1259

T
typhoonzero 已提交
1260 1261
        return s_prog

1262 1263
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1264
        block_suffix = "block"
1265 1266 1267
        block_idx = 0
        offset = 0
        is_slice = False
1268

1269
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1270

1271 1272
        if not block_name:
            return is_slice, block_idx, offset
1273

1274 1275 1276 1277
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1278 1279 1280 1281 1282
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1346

Y
yi.wu 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1386
    def _init_splited_vars(self):
Y
yi.wu 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1410
        if self.config.slice_var_up:
Y
yi.wu 已提交
1411 1412
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1413 1414 1415
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1416
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1417 1418
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1419 1420 1421
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1422 1423 1424 1425
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1426 1427
        assert (len(grad_blocks) == len(param_blocks))

1428
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1429 1430
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1447
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1448 1449 1450 1451
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1452
        # dict(grad_splited_var -> param_splited_var)
1453
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1454 1455 1456
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1457
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1458
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1459 1460

        # create mapping of endpoint -> split var to create pserver side program
1461
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1471
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1472 1473
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1474
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1475
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1476 1477
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1478 1479
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1480 1481 1482 1483 1484 1485

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1486 1487
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1488
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1489 1490 1491
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1492 1493
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1494 1495
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1496 1497 1498
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1499
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1500
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1501 1502

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1503
                    self.all_out_emb_vars.append(out_var)
1504 1505

                    # delete lookup_table_op
1506
                    delete_ops(program.global_block(), [op])
1507 1508 1509
                    # break for loop
                    break

S
seiriosPlus 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1556
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1557
        # 2. add split_ids_op and send_op to send gradient to pservers
1558

1559 1560
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1561
        table_grad_name = grad_var_name(self.table_name)
1562 1563 1564 1565
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1566
                program.global_block()._insert_op(
1567 1568 1569 1570 1571
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1572 1573
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1574
                program.global_block()._insert_op(
1575
                    index=op_index + 2,
1576
                    type="send",
1577
                    inputs={'X': self.trainer_side_table_grad_list},
1578 1579 1580 1581 1582
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1583 1584
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1585
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1586 1587 1588 1589 1590
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1591
                    })
1592 1593 1594 1595 1596 1597
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1598
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1624
        return prefetch_var_name_to_block_id
1625 1626

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1627
                                     pre_block_idx, grad_to_block_id):
1628
        # STEP: create table optimize block
1629
        table_opt_block = pserver_program._create_block(pre_block_idx)
1630
        # create table param and grad var in pserver program
1631 1632
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1633 1634 1635
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1636 1637
        ][0]

Y
Yancey1989 已提交
1638 1639
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1640

T
tangwei12 已提交
1641
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1642 1643
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1644 1645 1646
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1647 1648
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1649
            shape=table_shape,
Y
Yancey1989 已提交
1650 1651 1652
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1653

1654 1655
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1656
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1657
            self.origin_program.global_block().vars[grad_var_name(
1658
                self.table_name)])
1659

1660 1661 1662
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1663

1664 1665 1666
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1667
            pserver_side_table_grad_list = [
1668 1669 1670 1671 1672 1673 1674 1675 1676
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1677
            # append sum op for pserver_side_table_grad_list
1678 1679
            table_opt_block.append_op(
                type="sum",
1680
                inputs={"X": pserver_side_table_grad_list},
1681 1682
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1683 1684
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1685
            origin_grad_name = grad_var.name
1686 1687
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1688 1689
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1690
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1691
            grad_var = pserver_program.global_block()._rename_var(
1692
                origin_grad_name, splited_grad_name)
1693 1694 1695 1696 1697 1698 1699

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1700
        # only support sgd now
1701 1702 1703
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1704
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1705

1706 1707 1708
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1709 1710
        return table_opt_block

T
tangwei12 已提交
1711 1712 1713 1714 1715
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1716
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1717
            name="kLookupTablePath",
T
tangwei12 已提交
1718 1719
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1720

W
Wu Yi 已提交
1721
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1722
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1723 1724 1725 1726
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1727
            attrs={'file_path': "none"})
T
tangwei12 已提交
1728 1729 1730

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1731 1732 1733 1734 1735
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1736
        Create vars for each split.
T
typhoonzero 已提交
1737 1738
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1739 1740 1741 1742
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1743
        Returns:
1744
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1745
                from original var name to each var split.
T
typhoonzero 已提交
1746
        """
1747 1748

        # varname->[(block_id, current_block_size)]
1749
        block_map = collections.OrderedDict()
1750

1751
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1752 1753
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1754
            if varname not in block_map:
T
typhoonzero 已提交
1755
                block_map[varname] = []
1756
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1757

M
minqiyang 已提交
1758
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1759
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1760
            if len(splited) == 1:
1761
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1762
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1763
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1764
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1765 1766 1767 1768 1769
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1770
                continue
T
typhoonzero 已提交
1771
            var_mapping[varname] = []
T
typhoonzero 已提交
1772 1773 1774 1775
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1776

T
typhoonzero 已提交
1777
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1778
                size = block[1]
M
minqiyang 已提交
1779
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1780 1781 1782
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1783
                new_var_name = ""
1784
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1785
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1786
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1787 1788
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1789
                                   (varname, i)
T
typhoonzero 已提交
1790
                var = program.global_block().create_var(
T
typhoonzero 已提交
1791 1792
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1793
                    dtype=orig_var.dtype,
1794
                    type=orig_var.type,
T
typhoonzero 已提交
1795
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1796
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1797
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1798
        return var_mapping
T
done  
typhoonzero 已提交
1799

1800
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1801 1802 1803 1804 1805 1806
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1807
            persistable=persistable)
T
done  
typhoonzero 已提交
1808

Q
Qiao Longfei 已提交
1809 1810 1811 1812 1813 1814 1815
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1816
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1817 1818
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1819
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1820
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1821
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1822 1823
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1824
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1825 1826 1827 1828
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1829 1830 1831 1832
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1833
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1834
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1835 1836 1837 1838
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1839
                attrs={
Q
Qiao Longfei 已提交
1840
                    "sections": height_sections,
1841 1842
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1843 1844 1845
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1846

T
typhoonzero 已提交
1847 1848 1849 1850
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1851
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1864
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1865 1866
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1867 1868
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1869
                return param_shape
1870 1871 1872
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1873 1874 1875
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1876 1877
        elif op_type == "sgd":
            pass
1878 1879 1880 1881
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1882 1883
        return orig_shape

1884 1885
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1886
        orig_var_name = ""
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1897
        else:
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1920
            return None
1921 1922 1923 1924
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1925
        else:
1926
            merged_var_name = orig_varname
1927 1928

        merged_var = pserver_block.vars[merged_var_name]
1929 1930 1931
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1932
            for i in range(self.trainer_num):
1933
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1934
                                   (merged_var_name, i)
1935 1936 1937 1938
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1939 1940
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1941 1942 1943 1944 1945
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1946
        return merged_var
T
typhoonzero 已提交
1947

W
Wu Yi 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2010
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2011 2012
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2013
        program = optimize_block.program
T
typhoonzero 已提交
2014
        pserver_block = program.global_block()
2015
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2026 2027 2028 2029
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2030
        for key in opt_op.input_names:
T
typhoonzero 已提交
2031
            if key == "Grad":
W
Wu Yi 已提交
2032 2033 2034
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2045
            elif key == "Param":
W
Wu Yi 已提交
2046
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2047 2048
                if not param_block:
                    return
T
typhoonzero 已提交
2049
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2050
                    name=param_block.name,
T
typhoonzero 已提交
2051
                    persistable=True,
T
typhoonzero 已提交
2052 2053 2054
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2055
            elif key == "LearningRate":
2056
                # learning rate variable has already be created by non-optimize op,
2057
                # don't create it once again.
2058
                lr_varname = opt_op.input(key)[0]
2059
                if lr_varname in pserver_block.vars:
2060 2061 2062 2063 2064 2065 2066 2067 2068
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2069

T
typhoonzero 已提交
2070
        for key in opt_op.input_names:
2071
            new_shape = None
W
Wu Yi 已提交
2072
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2073
                continue
2074
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2075
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2076
            # update accumulator variable shape
2077 2078
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2079
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2080 2081 2082 2083 2084
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2085

2086
        # change output's ParamOut variable
2087 2088
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2089
        outputs["ParamOut"] = new_inputs["Param"]
2090
        optimize_block.append_op(
T
typhoonzero 已提交
2091 2092
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2093
            outputs=outputs,
G
gongweibao 已提交
2094
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2095

2096 2097 2098 2099 2100 2101
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2113
        grad_block = None
M
minqiyang 已提交
2114
        for _, g in six.iteritems(var_dict):
2115
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2116
                # skip per trainer vars
2117
                if g.name.find(".trainer_") == -1:
2118
                    # only param or grads have splited blocks
2119 2120
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2121 2122
                        grad_block = g
                        break
2123 2124
        return grad_block

Q
Qiyang Min 已提交
2125 2126 2127
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2128
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2129 2130 2131 2132
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2133
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2134 2135 2136

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2137
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2138 2139 2140 2141
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2142
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2143

Y
Yancey1989 已提交
2144
        return block.append_op(
G
gongweibao 已提交
2145
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2146 2147

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2148
        program = optimize_block.program
2149
        # Append the ops for parameters that do not need to be optimized/updated
2150 2151
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2152
        for key, varlist in six.iteritems(inputs):
2153 2154
            if not isinstance(varlist, list):
                varlist = [varlist]
2155 2156 2157
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2158
                # for inputs/outputs
2159
                grad_block = self._get_pserver_grad_param_var(
2160 2161
                    var, program.global_block().vars)
                if grad_block:
2162
                    varlist[i] = grad_block
2163
                elif var.name not in program.global_block().vars:
2164 2165 2166 2167 2168
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2169

2170 2171
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2172
        for key, varlist in six.iteritems(outputs):
2173 2174
            if not isinstance(varlist, list):
                varlist = [varlist]
2175 2176 2177
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2178 2179
                    var, program.global_block().vars)
                if grad_block:
2180
                    varlist[i] = grad_block
2181
                elif var.name not in program.global_block().vars:
2182 2183 2184 2185 2186
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2187

Y
Yancey1989 已提交
2188
        return optimize_block.append_op(
T
typhoonzero 已提交
2189
            type=opt_op.type,
T
typhoonzero 已提交
2190 2191
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2192
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2193

2194 2195 2196 2197
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2198
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2199
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2200 2201 2202 2203 2204 2205
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2206 2207
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2208 2209 2210 2211 2212 2213
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2214
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2215
        if "Param" in op.input_names and \
T
tangwei12 已提交
2216
                "LearningRate" in op.input_names:
2217 2218 2219 2220 2221 2222 2223
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2224
        if op.input("Param")[0] in param_names:
2225 2226 2227
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2228
                param = op.input("Param")[0]
T
typhoonzero 已提交
2229
                if same_or_split_var(n, param) and n != param:
2230 2231 2232
                    return True
            return False

T
typhoonzero 已提交
2233
    def _get_input_map_from_op(self, varmap, op):
2234
        """Returns a dict from op input name to the vars in varmap."""
2235
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2247
        """Returns a dict from op output name to the vars in varmap."""
2248
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2258 2259

    def _get_lr_ops(self):
2260 2261 2262
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2263 2264 2265 2266
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2267 2268 2269 2270 2271
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2272 2273 2274 2275
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2276
            if self._is_optimizer_op(op):
2277 2278 2279 2280
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2281
        block = self.origin_program.global_block()
2282 2283 2284 2285 2286
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2287

2288 2289 2290 2291 2292
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2293
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2294 2295 2296 2297 2298 2299
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2300 2301
                    # we only need to append op for once
                    break
2302
        return lr_ops
Y
Yancey1989 已提交
2303

W
Wu Yi 已提交
2304 2305 2306 2307 2308
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2309 2310
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2311 2312 2313
            return True
        return False

Y
Yancey1989 已提交
2314
    def _get_optimize_pass(self):
2315
        """
2316
        Get optimizer operators, parameters and gradients from origin_program
2317 2318
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2319
            params_grads (dict): parameter->gradient.
2320
        """
Y
Yancey1989 已提交
2321 2322 2323
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2324 2325
        # tmp set to dedup
        optimize_params = set()
2326
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2327
        for op in block.ops:
W
Wu Yi 已提交
2328
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2329
                opt_ops.append(op)
2330 2331 2332 2333 2334 2335
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2336 2337
                        params_grads.append([
                            origin_var_dict[param_name],
2338
                            origin_var_dict[grad_name]
2339
                        ])
Y
Yancey1989 已提交
2340 2341 2342
            else:
                pass
        return opt_ops, params_grads