distribute_transpiler.py 60.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
import math
S
seiriosPlus 已提交
32
import random
33
import numpy as np
34
import collections
35

36
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
37
from .. import core, framework
T
typhoonzero 已提交
38
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
39
                        default_startup_program, Block, \
W
Wu Yi 已提交
40
                        Parameter, grad_var_name
41 42
from .details import *
from functools import reduce
43 44 45

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
46
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
47 48 49
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
50 51


T
typhoonzero 已提交
52 53 54 55 56 57
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
58

T
typhoonzero 已提交
59 60
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
61 62


63 64 65 66
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
67
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
68
    """
69 70 71 72 73 74
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
75
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
76 77 78

    Args:
        var_list (list): List of variables.
79 80
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
81 82
        min_block_size (int): Minimum splitted block size.
    Returns:
83
        blocks (list[(varname, block_id, current_block_size)]): A list
84
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
85 86 87
    """
    blocks = []
    for var in var_list:
88
        split_count = slice_count
T
typhoonzero 已提交
89 90 91 92
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
93
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
94 95 96 97 98 99 100 101 102
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
103
        # update split_count after aligning
T
typhoonzero 已提交
104
        split_count = int(math.ceil(var_numel / float(block_size)))
105
        for block_id in range(split_count):
T
typhoonzero 已提交
106 107 108 109 110 111 112
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
113 114 115 116 117 118 119
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
120
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
121 122 123 124 125 126 127 128
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
129
class DistributeTranspiler(object):
Y
yi.wu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
164

G
gongweibao 已提交
165 166 167 168 169 170 171 172 173 174 175 176
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

177 178 179 180 181 182 183
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
184 185 186 187 188 189 190 191 192 193 194
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
195 196 197 198 199 200 201 202 203 204 205
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
206
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
207 208 209
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
210
        self._init_splited_vars()
211

Y
Yancey1989 已提交
212 213
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
214
        send_vars = []
215 216 217 218 219 220

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
221 222
        grad_var_mapping_items = list(
            six.moves.iteritems(self.grad_var_mapping))
223

G
gongweibao 已提交
224
        if not self.config.slice_var_up:
225
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
226
            random.shuffle(grad_var_mapping_items)
227 228

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
229
            eplist = ps_dispatcher.dispatch(splited_vars)
230

G
gongweibao 已提交
231
            if not self.config.slice_var_up:
232 233
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
234 235 236 237 238 239 240 241 242
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
243
                index += 1
Y
Yancey1989 已提交
244 245 246 247
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
248
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
249
                index=index + 1,
250
                type="send",
Y
update  
Yancey1989 已提交
251
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
252 253 254 255 256
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
257 258
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
259 260 261 262 263

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
264
                outputs={},
Y
Yancey1989 已提交
265 266
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
267 268
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
269
                })
Y
Yancey1989 已提交
270 271 272

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
273
        for _, var in enumerate(send_vars):
274
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
275
        ps_dispatcher.reset()
Y
Yancey1989 已提交
276 277
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
278
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
279 280
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
281

Y
Yancey1989 已提交
282
        # step4: Concat the parameters splits together after recv.
283
        for varname, splited_var in six.moves.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
284 285 286 287 288 289 290 291
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
292 293 294 295 296
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
297

T
typhoonzero 已提交
298
        program.global_block().append_op(
Y
Yancey1989 已提交
299 300
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
301
            outputs={},
Q
qiaolongfei 已提交
302 303
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
304
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
305
            })
Y
Yancey1989 已提交
306

307
        for varname, splited_var in six.moves.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
308 309
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
310
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
311
            program.global_block().append_op(
T
typhoonzero 已提交
312
                type="concat",
T
typhoonzero 已提交
313
                inputs={"X": splited_var},
T
typhoonzero 已提交
314
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
315
                attrs={"axis": 0})
T
typhoonzero 已提交
316

317
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
318 319
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
320
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
321

T
typhoonzero 已提交
322
    def get_trainer_program(self):
Y
yi.wu 已提交
323 324 325 326 327 328
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
329
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
330
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
331
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
332 333
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
334 335 336

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
337
        Get parameter server side program.
338

Y
yi.wu 已提交
339 340
        Args:
            endpoint (str): current parameter server endpoint.
341

Y
yi.wu 已提交
342 343
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
344
        """
Y
yi.wu 已提交
345 346 347 348 349
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
350 351
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
352
        pserver_program.random_seed = self.origin_program.random_seed
353
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
354 355 356 357 358 359 360 361
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
362 363 364 365 366
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
367 368 369 370 371 372 373 374 375
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
376
            if self.sync_mode and self.trainer_num > 1:
377
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
378 379 380 381 382 383 384 385 386
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
387

Q
qiaolongfei 已提交
388
        # step 3
389
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
390 391 392
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
393
        # step 3.2
T
typhoonzero 已提交
394 395 396 397
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
398 399
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
400
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
401
        # step 3.3
T
typhoonzero 已提交
402
        # Iterate through the ops, and if an op and the optimize ops
403
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
404
        # append it into the sub program.
T
typhoonzero 已提交
405 406 407

        global_ops = []

Y
wip  
yi.wu 已提交
408 409
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
410
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
411
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
412
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
413
            elif op not in lr_ops:
Q
Qiyang Min 已提交
414
                self._append_pserver_non_opt_ops(block, op)
415 416 417 418 419 420

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
421

Y
Yancey1989 已提交
422
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
423 424 425 426 427 428 429 430
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
431
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
432 433 434

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
435
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
436 437

            # clone ops
Y
Yancey1989 已提交
438 439
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
440
                # clone sub_block of op
Y
Yancey1989 已提交
441
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
442 443 444 445

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

446
        # append lr decay ops to the child block if exists
447
        lr_ops = self._get_lr_ops()
448 449
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
450
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
451 452
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
453
            optimize_blocks.append(lr_decay_block)
454
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
455
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
456
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
457 458
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
459

T
typhoonzero 已提交
460
        # append op to the current block
Q
qiaolongfei 已提交
461
        grad_to_block_id = []
Q
qiaolongfei 已提交
462
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
463
        for idx, opt_op in enumerate(opt_op_on_pserver):
464
            per_opt_block = pserver_program.create_block(pre_block_idx)
465
            optimize_blocks.append(per_opt_block)
466
            # append grad merging ops before clip and weight decay
467
            # cases may like:
T
typhoonzero 已提交
468
            # L2Decay op -> clip op -> optimize
469 470 471 472 473 474 475
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
476
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
477 478
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
479
                if ufind.is_connected(op, opt_op) and op not in global_ops:
480
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
481
                                           merged_var, lr_ops)
T
typhoonzero 已提交
482

W
Wu Yi 已提交
483 484
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
485
        # append global ops
486
        if global_ops:
Q
qiaolongfei 已提交
487 488
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
489
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
490
            for glb_op in global_ops:
X
Xi Chen 已提交
491
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
492
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
493

494
        # process distributed lookup_table
Q
qiaolongfei 已提交
495
        prefetch_var_name_to_block_id = []
496 497
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
498
            table_opt_block = self._create_table_optimize_block(
499
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
500
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
501
            prefetch_var_name_to_block_id = self._create_prefetch_block(
502
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
503 504
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
505 506 507 508

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
509
            assert len(prefetch_var_name_to_block_id) > 0
510
        else:
Q
qiaolongfei 已提交
511
            assert len(prefetch_var_name_to_block_id) == 0
512

513
        attrs = {
514
            "optimize_blocks": optimize_blocks,
515 516 517
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
518
            "grad_to_block_id": grad_to_block_id,
519 520 521 522
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
523
            attrs['checkpint_block_id'] = checkpoint_block_id
524

T
typhoonzero 已提交
525 526 527 528 529
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
530
            attrs=attrs)
531

W
Wu Yi 已提交
532
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
533 534 535 536 537 538 539
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
540 541 542 543 544

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
545

Y
yi.wu 已提交
546 547
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
548 549
        """
        s_prog = Program()
T
typhoonzero 已提交
550
        orig_s_prog = default_startup_program()
X
Xin Pan 已提交
551
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
552 553 554 555 556 557 558 559 560 561 562
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
563
        created_var_map = collections.OrderedDict()
564
        for _, var in six.moves.iteritems(pserver_vars):
W
Wu Yi 已提交
565
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
566 567 568 569
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
570
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
571 572 573 574 575 576 577 578 579 580 581 582
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
583 584 585
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
586 587 588 589 590 591 592 593 594 595 596
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

597 598
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
660
    def _init_splited_vars(self):
Y
yi.wu 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
684
        if self.config.slice_var_up:
Y
yi.wu 已提交
685 686
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
687 688 689
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
690
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
691 692
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
693 694 695
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
696 697 698 699
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
700 701 702 703 704 705 706 707 708
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
709
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
710 711 712 713 714 715 716
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
717
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
718 719 720 721 722 723 724 725 726
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

727
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
728 729
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
730
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
731 732 733 734 735 736 737 738 739
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
740 741 742 743 744 745 746 747 748

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

749
                    lookup_table_op_index = list(all_ops).index(op)
750 751 752
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
766 767

                    # insert split_ids_op
W
Wu Yi 已提交
768
                    program.global_block()._insert_op(
769
                        index=lookup_table_op_index,
770 771 772 773 774 775 776
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
777
                        outputs={"Out": prefetch_input_vars})
778 779

                    # insert prefetch_op
W
Wu Yi 已提交
780
                    program.global_block()._insert_op(
781
                        index=lookup_table_op_index + 1,
782
                        type="prefetch",
Q
qiaolongfei 已提交
783 784
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
785
                        attrs={
786
                            "epmap": pserver_endpoints,
787 788 789
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
790
                        })
791 792

                    # insert concat_op
W
Wu Yi 已提交
793
                    program.global_block()._insert_op(
794 795 796 797 798 799 800
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
801
                            'X': prefetch_output_vars
802
                        },
803 804 805 806 807
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
808
                        })
809 810

                    # delete lookup_table_op
811
                    delete_ops(program.global_block(), [op])
812 813 814
                    # break for loop
                    break

Y
Yancey1989 已提交
815
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
816
        # 2. add split_ids_op and send_op to send gradient to pservers
817 818
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
819
        table_grad_name = grad_var_name(self.table_name)
820 821 822 823
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
824
                program.global_block()._insert_op(
825 826 827 828 829
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
830
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
831
                program.global_block()._insert_op(
832
                    index=op_index + 2,
833
                    type="send",
834
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
835 836
                    outputs={},
                    attrs={
837
                        "sync_mode": True,
Y
Yancey1989 已提交
838 839 840
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
841 842 843 844 845 846
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
875 876

    def _create_table_optimize_block(self, pserver_index, pserver_program,
877
                                     pre_block_idx, grad_to_block_id):
878 879
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
880 881 882 883 884 885 886 887
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
888 889
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
890
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
891
            self.origin_program.global_block().vars[grad_var_name(
892
                self.table_name)])
893 894 895 896

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
897 898
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
899
        ][0]
Q
qiaolongfei 已提交
900
        table_opt_block = pserver_program.create_block(pre_block_idx)
901 902 903
        # only support sgd now
        assert table_opt_op.type == "sgd"

904 905 906
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
907
            pserver_side_table_grad_list = [
908 909 910 911 912 913 914 915 916
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

917
            # append sum op for pserver_side_table_grad_list
918 919
            table_opt_block.append_op(
                type="sum",
920
                inputs={"X": pserver_side_table_grad_list},
921 922
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
923 924
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
925
            origin_grad_name = grad_var.name
926 927
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
928 929
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
930
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
931
            grad_var = pserver_program.global_block()._rename_var(
932
                origin_grad_name, splited_grad_name)
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

948 949 950
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

951 952
        return table_opt_block

T
tangwei12 已提交
953 954 955 956 957 958
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
959
        pserver_program.global_block().create_var(
T
tangwei12 已提交
960
            name="kLookupTablePath",
T
tangwei12 已提交
961 962
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
963

T
tangwei12 已提交
964
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
965
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
966 967 968 969
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
970
            attrs={'file_path': "none"})
T
tangwei12 已提交
971 972 973

        return checkpoint_save_block.idx

T
typhoonzero 已提交
974 975 976 977 978
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
979
        Create vars for each split.
T
typhoonzero 已提交
980 981
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
982 983 984 985
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
986
        Returns:
987
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
988
                from original var name to each var split.
T
typhoonzero 已提交
989
        """
990 991

        # varname->[(block_id, current_block_size)]
992
        block_map = collections.OrderedDict()
993

994
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
995 996
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
997
            if varname not in block_map:
T
typhoonzero 已提交
998
                block_map[varname] = []
999
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1000

1001
        for varname, splited in six.moves.iteritems(block_map):
T
typhoonzero 已提交
1002
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1003
            if len(splited) == 1:
1004
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1005 1006
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1007
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1008 1009 1010 1011 1012
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1013
                continue
T
typhoonzero 已提交
1014 1015

            var_mapping[varname] = []
T
typhoonzero 已提交
1016 1017 1018 1019
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1020

T
typhoonzero 已提交
1021
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1022
                size = block[1]
M
minqiyang 已提交
1023
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1024 1025 1026
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1027
                new_var_name = ""
1028
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1029 1030 1031 1032 1033
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1034
                var = program.global_block().create_var(
T
typhoonzero 已提交
1035 1036
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1037
                    dtype=orig_var.dtype,
1038
                    type=orig_var.type,
T
typhoonzero 已提交
1039
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1040
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1041
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1042
        return var_mapping
T
done  
typhoonzero 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1055 1056 1057 1058 1059 1060
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1061
            persistable=persistable)
T
done  
typhoonzero 已提交
1062

Y
Yancey1989 已提交
1063
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1064 1065 1066 1067
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1068
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1078
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1088

T
typhoonzero 已提交
1089 1090 1091 1092
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1093
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1116 1117
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1118
        orig_var_name = ""
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1129
        else:
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1157
        else:
1158 1159 1160 1161 1162 1163
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1164
            for i in range(self.trainer_num):
1165 1166 1167 1168 1169 1170 1171
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1172 1173
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1174 1175 1176 1177 1178 1179 1180 1181
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1182

1183
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1184
                            grad_to_block_id, origin_program, merged_var):
1185
        program = optimize_block.program
T
typhoonzero 已提交
1186
        pserver_block = program.global_block()
1187
        new_inputs = collections.OrderedDict()
T
typhoonzero 已提交
1188 1189
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1190
        for key in opt_op.input_names:
T
typhoonzero 已提交
1191 1192 1193 1194 1195 1196
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1197
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1198 1199 1200 1201
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1202
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1203
                    name=param_block.name,
T
typhoonzero 已提交
1204
                    persistable=True,
T
typhoonzero 已提交
1205 1206 1207
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1208
            elif key == "LearningRate":
1209
                # learning rate variable has already be created by non-optimize op,
1210
                # don't create it once again.
1211
                lr_varname = opt_op.input(key)[0]
1212
                if lr_varname in pserver_block.vars:
1213 1214 1215 1216 1217 1218 1219 1220 1221
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1222

T
typhoonzero 已提交
1223
        for key in opt_op.input_names:
1224 1225
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1226
                continue
1227
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1228 1229 1230 1231
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1232
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1233 1234 1235 1236 1237
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1238

1239
        # change output's ParamOut variable
1240 1241
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1242
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1243

1244
        optimize_block.append_op(
T
typhoonzero 已提交
1245 1246
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1247
            outputs=outputs,
T
typhoonzero 已提交
1248 1249
            attrs=opt_op.attrs)

1250 1251
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
1252
        for _, g in six.moves.iteritems(var_dict):
1253 1254 1255 1256 1257 1258
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1259 1260 1261
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
1262
        for key, varlist in six.moves.iteritems(inputs):
Q
Qiyang Min 已提交
1263 1264 1265 1266
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1267
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1268 1269 1270

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
1271
        for key, varlist in six.moves.iteritems(outputs):
Q
Qiyang Min 已提交
1272 1273 1274 1275
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1276
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1277

Y
Yancey1989 已提交
1278
        return block.append_op(
Q
Qiyang Min 已提交
1279 1280 1281
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.attrs)

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1282
        program = optimize_block.program
1283
        # Append the ops for parameters that do not need to be optimized/updated
1284 1285
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1286
        for key, varlist in six.moves.iteritems(inputs):
1287 1288
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1289
            for var in varlist:
1290 1291 1292 1293 1294 1295
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1296
                elif var.name not in program.global_block().vars:
1297
                    program.global_block().create_var(
T
typhoonzero 已提交
1298 1299 1300 1301 1302
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1303 1304
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1305
        for key, varlist in six.moves.iteritems(outputs):
1306 1307 1308
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1309 1310 1311 1312
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1313
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1314
                    program.global_block()._clone_variable(var)
1315

Y
Yancey1989 已提交
1316
        return optimize_block.append_op(
T
typhoonzero 已提交
1317
            type=opt_op.type,
T
typhoonzero 已提交
1318 1319
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1320 1321
            attrs=opt_op.attrs)

1322 1323 1324 1325
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1326 1327
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1328 1329 1330 1331 1332 1333
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1334 1335
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1336 1337 1338 1339 1340 1341
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1342
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1343 1344
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1345 1346 1347 1348 1349 1350 1351
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1352
        if op.input("Param")[0] in param_names:
1353 1354 1355
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1356
                param = op.input("Param")[0]
T
typhoonzero 已提交
1357
                if same_or_split_var(n, param) and n != param:
1358 1359 1360
                    return True
            return False

T
typhoonzero 已提交
1361
    def _get_input_map_from_op(self, varmap, op):
1362
        """Returns a dict from op input name to the vars in varmap."""
1363
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1375
        """Returns a dict from op output name to the vars in varmap."""
1376
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1386 1387 1388 1389 1390 1391

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1392
            if self._is_optimizer_op(op):
1393 1394 1395 1396
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1397
        block = self.origin_program.global_block()
1398 1399 1400 1401 1402
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1403

1404 1405 1406 1407 1408
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1409
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1410 1411 1412 1413 1414 1415
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1416 1417
                    # we only need to append op for once
                    break
1418
        return lr_ops
Y
Yancey1989 已提交
1419

W
Wu Yi 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

Y
Yancey1989 已提交
1430
    def _get_optimize_pass(self):
1431
        """
1432
        Get optimizer operators, parameters and gradients from origin_program
1433 1434 1435 1436
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1437 1438 1439
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1440
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1441
        for op in block.ops:
W
Wu Yi 已提交
1442
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1443
                opt_ops.append(op)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1455 1456 1457
            else:
                pass
        return opt_ops, params_grads