distribute_transpiler.py 89.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

149 150 151 152 153
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
154 155 156 157 158
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
159
    enable_dc_asgd = False
W
Wu Yi 已提交
160 161
    # supported modes: pserver, nccl2
    mode = "pserver"
162
    print_log = False
W
Wu Yi 已提交
163
    wait_port = True
Q
Qiao Longfei 已提交
164 165
    # split the send recv var in runtime
    runtime_split_send_recv = False
166
    sync_mode = True
G
gongweibao 已提交
167 168


Y
gen rst  
yi.wu 已提交
169
class DistributeTranspiler(object):
Y
yi.wu 已提交
170 171 172 173
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
174
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
175

W
Wu Yi 已提交
176 177 178 179 180 181 182 183 184
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
185 186 187 188

    Examples:
        .. code-block:: python

189 190 191 192 193 194 195 196 197 198
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
199 200 201 202 203 204
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
205
            role = "PSERVER"
T
Tink_Y 已提交
206 207 208 209 210 211
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
212
                                                                pserver_program)
T
Tink_Y 已提交
213 214 215 216
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
217 218
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
219 220
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
221
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
222
            t = fluid.DistributeTranspiler(config=config)
223
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
224
            exe = fluid.ParallelExecutor(
225 226 227
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
228 229
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
230
    """
Y
Yancey1989 已提交
231

G
gongweibao 已提交
232 233 234 235 236 237 238 239 240
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

241 242 243
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
244 245 246
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
247 248 249 250
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
251 252
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
253 254 255 256 257 258
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
259 260
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
277
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
278
        sparse_update_ops = []
279
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
280 281
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
282
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
283 284 285
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
286
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
287
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
288 289 290
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
291
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
292
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
293 294 295 296 297 298 299
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
300

301 302 303 304 305
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
306
                  sync_mode=True,
W
Wu Yi 已提交
307 308
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
309
        """
310
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
311 312 313 314 315 316

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
317 318
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
319 320
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
321 322 323
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
324
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
325 326
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
327 328 329
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
330 331 332 333 334 335 336 337 338 339 340

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
341 342 343
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
344 345
        if startup_program is None:
            startup_program = default_startup_program()
346
        self.origin_program = program
W
Wu Yi 已提交
347 348
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
349

W
Wu Yi 已提交
350 351
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
352
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
353 354 355 356
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
357 358
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
359 360
            return

361
        self.trainer_num = trainers
362
        self.sync_mode = sync_mode
363 364 365
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
366
        self.vars_overview = VarsDistributed()
367 368
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
369
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
370 371
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
372
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
373
        self.grad_name_to_param_name = dict()
374 375
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
376
            self.grad_name_to_param_name[grad_var.name] = param_var.name
377

Q
Qiao Longfei 已提交
378
        # get all sparse update ops
Q
Qiao Longfei 已提交
379
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
380
            self.origin_program)
Q
Qiao Longfei 已提交
381
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
382 383
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
384 385 386
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
387
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
388 389 390
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

391
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
392
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
393
        self._init_splited_vars()
394

G
gongweibao 已提交
395
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
396
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
397
        send_vars = []
398 399 400 401 402 403

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
404
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
405

G
gongweibao 已提交
406
        if not self.config.slice_var_up:
407 408
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
409

410
        self.grad_name_to_send_dummy_out = dict()
411
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
412
            eplist = ps_dispatcher.dispatch(splited_vars)
413

G
gongweibao 已提交
414
            if not self.config.slice_var_up:
415 416
                assert (len(splited_vars) == 1)

417
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
418
            if len(splited_vars) == 1:
419
                splited_grad_varname = splited_vars[0].name
420 421
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
422 423
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
424
                        grad_varname]
Q
Qiao Longfei 已提交
425 426 427 428
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
429
            elif len(splited_vars) > 1:
430
                orig_var = program.global_block().vars[splited_grad_varname]
431 432
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
433 434 435 436
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
437 438
            else:
                AssertionError("Can not insert the send op by original "
439
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
440

W
Wu Yi 已提交
441 442
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
443
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
444

Q
Qiao Longfei 已提交
445 446 447 448 449 450 451 452 453 454 455
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
456 457 458 459
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
460
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
461
                index=index + 1,
462
                type="send",
Q
Qiao Longfei 已提交
463
                inputs={"X": send_input_vars},
464
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
465 466
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
467 468
                    "sections": sections,
                    "send_varnames": send_varnames,
469
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
470 471 472 473
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
474
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
475
                })
Y
update  
Yancey1989 已提交
476 477
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
478 479

        if self.sync_mode:
W
Wu Yi 已提交
480 481
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
482 483 484 485
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
486
            input_deps = list(self.grad_name_to_send_dummy_out.values())
487

Y
Yancey1989 已提交
488 489
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
490
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
491
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
492 493
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
494 495
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
496
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
497
                })
Y
Yancey1989 已提交
498

G
gongweibao 已提交
499
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
500
        recv_vars = []
Y
update  
Yancey1989 已提交
501
        for _, var in enumerate(send_vars):
502
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
503
        ps_dispatcher.reset()
Y
Yancey1989 已提交
504 505
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
506
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
507 508
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
509

510 511 512 513
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
514
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
515
        all_recv_outputs = []
516
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
517
            eps = []
Q
Qiao Longfei 已提交
518
            table_names = []
Y
Yancey1989 已提交
519 520 521
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
522
                table_names.append(var.name)
W
Wu Yi 已提交
523 524 525 526
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
527
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
528
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
529

W
Wu Yi 已提交
530 531 532 533 534 535 536 537 538
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
539
            if param_varname in self.sparse_param_to_height_sections:
540 541 542 543 544 545

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
546 547
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
548 549
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
550
            else:
Q
Qiao Longfei 已提交
551 552 553
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
554
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
555
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
556
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
557

Q
Qiao Longfei 已提交
558 559 560 561 562 563
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
564
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
565 566 567 568 569 570
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
571

Q
qiaolongfei 已提交
572
        if self.sync_mode:
W
Wu Yi 已提交
573
            # form a WAW dependency
Q
qiaolongfei 已提交
574 575 576
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
577
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
578 579
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
580
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
581 582
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
583

584
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
585 586
            if len(splited_var) <= 1:
                continue
587
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
588
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
589 590 591 592 593 594 595 596 597
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
598

G
gongweibao 已提交
599 600
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

601
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
602 603
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
604
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
605

606 607 608
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
609
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
610 611 612 613 614 615
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
616
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
617
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
618

T
typhoonzero 已提交
619
        lr_ops = self._get_lr_ops()
620
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
621 622
        delete_ops(self.origin_program.global_block(), lr_ops)

623 624
        # delete table init op
        if self.has_distributed_lookup_table:
625 626 627
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
628 629
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
630 631 632 633 634
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
635
            table_init_op = table_param_init_op[0]
636 637 638 639 640 641
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
642

643
        self.origin_program.__str__()
G
gongweibao 已提交
644

W
Wu Yi 已提交
645 646 647
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

648
        return self.origin_program
T
typhoonzero 已提交
649

W
Wu Yi 已提交
650
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
651 652 653 654
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
655
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
656
            eplist (list): A list of strings indicating
G
gongweibao 已提交
657 658 659 660

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
661
        startup_program = self.startup_program
G
gongweibao 已提交
662 663 664 665

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
666
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
687
                inputs={"X": []},
G
gongweibao 已提交
688 689 690
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
691
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
692 693 694
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
695 696
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
697 698 699
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
700
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
701 702
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
703
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
704 705 706
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
707
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
708
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
709 710
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
711
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
712
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
713 714 715 716 717 718 719 720 721 722
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
723 724 725 726 727 728 729 730
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
731 732
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
733
        Get parameter server side program.
734

Y
yi.wu 已提交
735 736
        Args:
            endpoint (str): current parameter server endpoint.
737

Y
yi.wu 已提交
738 739
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
740
        """
Y
yi.wu 已提交
741 742 743 744
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
745 746 747
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
748 749
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
750
        pserver_program.random_seed = self.origin_program.random_seed
751 752
        pserver_program._copy_dist_param_info_from(self.origin_program)

753
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
754 755 756 757 758 759 760 761
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
762 763 764 765 766
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
767 768 769 770 771 772 773 774 775
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
776
            if self.sync_mode and self.trainer_num > 1:
777
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
778 779 780 781 782 783 784 785 786
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
787

Q
qiaolongfei 已提交
788
        # step 3
789
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
790 791 792
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
793
        # step 3.2
T
typhoonzero 已提交
794 795 796 797
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
798 799
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
800
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
801
        # step 3.3
W
Wu Yi 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
820
        # Iterate through the ops, and if an op and the optimize ops
821
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
822
        # append it into the sub program.
T
typhoonzero 已提交
823 824 825

        global_ops = []

826 827 828
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
829 830
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
831
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
832
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
833 834
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
835
            elif op not in lr_ops:
Q
Qiyang Min 已提交
836
                self._append_pserver_non_opt_ops(block, op)
837

Y
Yancey1989 已提交
838
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
839 840 841 842 843 844 845 846
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
847
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
848 849 850

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
851
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
852 853

            # clone ops
Y
Yancey1989 已提交
854 855
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
856
                # clone sub_block of op
Y
Yancey1989 已提交
857
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
858 859

            # reset the block of op
W
Wu Yi 已提交
860
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
861

862
        # append lr decay ops to the child block if exists
863
        lr_ops = self._get_lr_ops()
864 865
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
866
        if len(lr_ops) > 0:
W
Wu Yi 已提交
867
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
868
                pserver_program.num_blocks - 1)
869
            optimize_blocks.append(lr_decay_block)
870
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
871
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
872
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
873 874
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
875

T
typhoonzero 已提交
876
        # append op to the current block
Q
qiaolongfei 已提交
877
        grad_to_block_id = []
Q
qiaolongfei 已提交
878
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
879
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
880
            per_opt_block = pserver_program._create_block(pre_block_idx)
881
            optimize_blocks.append(per_opt_block)
882
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
883
            # append grad merging ops before clip and weight decay
884 885
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
886
            for _, op in enumerate(self.optimize_ops):
887
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
888
                # merged_var should be the input var name of L2Decay
889 890 891
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
892 893 894
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
895 896 897 898 899 900
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
901
                            op not in global_ops:
902 903 904 905 906
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
907

908
        # dedup grad to ids list
W
Wu Yi 已提交
909
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
910
        # append global ops
911
        if global_ops:
W
Wu Yi 已提交
912
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
913
                pserver_program.num_blocks - 1)
914
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
915
            for glb_op in global_ops:
X
Xi Chen 已提交
916
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
917
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
918

919
        # process distributed lookup_table
Q
qiaolongfei 已提交
920
        prefetch_var_name_to_block_id = []
921 922
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
923
            table_opt_block = self._create_table_optimize_block(
924
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
925
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
926
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
927
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
928 929
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
930

T
tangwei12 已提交
931
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
932 933
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
934

935
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
936 937
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
938 939 940 941 942 943
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
944
        attrs = {
945
            "optimize_blocks": optimize_blocks,
946 947 948
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
949
            "grad_to_block_id": grad_to_block_id,
950
            "sparse_grad_to_param": sparse_grad_to_param,
951
        }
T
tangwei12 已提交
952 953

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
954
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
955 956
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
957

T
tangwei12 已提交
958 959 960 961
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
962 963 964 965 966
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
967
            attrs=attrs)
968

W
Wu Yi 已提交
969
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
970 971
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
972 973
        return pserver_program

W
Wu Yi 已提交
974 975 976 977 978 979
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
980

W
Wu Yi 已提交
981 982 983 984
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
985 986
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
987 988
        return pserver_prog, pserver_startup

989 990
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
991
                            pserver_program=None,
992
                            startup_program=None):
T
typhoonzero 已提交
993
        """
W
Wu Yi 已提交
994 995
        **Deprecated**

T
typhoonzero 已提交
996 997 998
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
999 1000 1001

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1002 1003
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1004
                when initalizing
1005

Y
yi.wu 已提交
1006 1007
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
1008 1009
        """
        s_prog = Program()
W
Wu Yi 已提交
1010
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1011
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1023
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1024
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1025
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1026 1027 1028 1029
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1030
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1031 1032
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1043 1044

            if op_on_pserver:
1045 1046 1047
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1048
                if op.type in [
1049 1050
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1051
                ]:
W
Wu Yi 已提交
1052
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1053 1054 1055 1056
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1057
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1067

T
typhoonzero 已提交
1068 1069
        return s_prog

1070 1071
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1072
        block_suffix = "block"
1073 1074 1075
        block_idx = 0
        offset = 0
        is_slice = False
1076

1077
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1078

1079 1080
        if not block_name:
            return is_slice, block_idx, offset
1081

1082 1083 1084 1085
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1086 1087 1088 1089 1090
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1154

Y
yi.wu 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1194
    def _init_splited_vars(self):
Y
yi.wu 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1218
        if self.config.slice_var_up:
Y
yi.wu 已提交
1219 1220
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1221 1222 1223
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1224
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1225 1226
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1227 1228 1229
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1230 1231 1232 1233
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1234 1235
        assert (len(grad_blocks) == len(param_blocks))

1236
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1237 1238
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1255
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1256 1257 1258 1259
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1260
        # dict(grad_splited_var -> param_splited_var)
1261
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1262 1263 1264
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1265
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1266
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1267 1268

        # create mapping of endpoint -> split var to create pserver side program
1269
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1279
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1280 1281
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1282
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1283
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1284 1285
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1286 1287
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1288 1289 1290 1291 1292 1293

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1294 1295
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1296
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1297 1298 1299
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1300 1301
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1302 1303
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1304 1305 1306
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1307
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1308
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1309 1310

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1311
                    self.all_out_emb_vars.append(out_var)
1312 1313

                    # delete lookup_table_op
1314
                    delete_ops(program.global_block(), [op])
1315 1316 1317
                    # break for loop
                    break

S
seiriosPlus 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1364
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1365
        # 2. add split_ids_op and send_op to send gradient to pservers
1366

1367 1368
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1369
        table_grad_name = grad_var_name(self.table_name)
1370 1371 1372 1373
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1374
                program.global_block()._insert_op(
1375 1376 1377 1378 1379
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1380 1381
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1382
                program.global_block()._insert_op(
1383
                    index=op_index + 2,
1384
                    type="send",
1385
                    inputs={'X': self.trainer_side_table_grad_list},
1386 1387 1388 1389 1390
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1391
                    attrs={
1392
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1393
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1394
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1395 1396 1397 1398 1399
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1400
                    })
1401 1402 1403 1404 1405 1406
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1407
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1433
        return prefetch_var_name_to_block_id
1434 1435

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1436
                                     pre_block_idx, grad_to_block_id):
1437
        # STEP: create table optimize block
1438
        table_opt_block = pserver_program._create_block(pre_block_idx)
1439
        # create table param and grad var in pserver program
1440 1441
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1442 1443 1444
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1445 1446
        ][0]

Y
Yancey1989 已提交
1447 1448
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1449

T
tangwei12 已提交
1450
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1451 1452
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1453 1454 1455
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1456 1457
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1458
            shape=table_shape,
Y
Yancey1989 已提交
1459 1460 1461
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1462

1463 1464
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1465
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1466
            self.origin_program.global_block().vars[grad_var_name(
1467
                self.table_name)])
1468

1469 1470 1471
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1472

1473 1474 1475
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1476
            pserver_side_table_grad_list = [
1477 1478 1479 1480 1481 1482 1483 1484 1485
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1486
            # append sum op for pserver_side_table_grad_list
1487 1488
            table_opt_block.append_op(
                type="sum",
1489
                inputs={"X": pserver_side_table_grad_list},
1490 1491
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1492 1493
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1494
            origin_grad_name = grad_var.name
1495 1496
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1497 1498
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1499
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1500
            grad_var = pserver_program.global_block()._rename_var(
1501
                origin_grad_name, splited_grad_name)
1502 1503 1504 1505 1506 1507 1508

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1509
        # only support sgd now
1510 1511 1512
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1513
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1514

1515 1516 1517
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1518 1519
        return table_opt_block

T
tangwei12 已提交
1520 1521 1522 1523 1524
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1525
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1526
            name="kLookupTablePath",
T
tangwei12 已提交
1527 1528
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1529

W
Wu Yi 已提交
1530
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1531
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1532 1533 1534 1535
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1536
            attrs={'file_path': "none"})
T
tangwei12 已提交
1537 1538 1539

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1540 1541 1542 1543 1544
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1545
        Create vars for each split.
T
typhoonzero 已提交
1546 1547
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1548 1549 1550 1551
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1552
        Returns:
1553
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1554
                from original var name to each var split.
T
typhoonzero 已提交
1555
        """
1556 1557

        # varname->[(block_id, current_block_size)]
1558
        block_map = collections.OrderedDict()
1559

1560
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1561 1562
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1563
            if varname not in block_map:
T
typhoonzero 已提交
1564
                block_map[varname] = []
1565
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1566

M
minqiyang 已提交
1567
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1568
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1569
            if len(splited) == 1:
1570
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1571
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1572
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1573
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1574 1575 1576 1577 1578
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1579
                continue
T
typhoonzero 已提交
1580
            var_mapping[varname] = []
T
typhoonzero 已提交
1581 1582 1583 1584
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1585

T
typhoonzero 已提交
1586
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1587
                size = block[1]
M
minqiyang 已提交
1588
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1589 1590 1591
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1592
                new_var_name = ""
1593
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1594
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1595
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1596 1597
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1598
                                   (varname, i)
T
typhoonzero 已提交
1599
                var = program.global_block().create_var(
T
typhoonzero 已提交
1600 1601
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1602
                    dtype=orig_var.dtype,
1603
                    type=orig_var.type,
T
typhoonzero 已提交
1604
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1605
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1606
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1607
        return var_mapping
T
done  
typhoonzero 已提交
1608

1609
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1610 1611 1612 1613 1614 1615
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1616
            persistable=persistable)
T
done  
typhoonzero 已提交
1617

Q
Qiao Longfei 已提交
1618 1619 1620 1621 1622 1623 1624
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1625
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1626 1627
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1628
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1629
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1630
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1631 1632
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1633
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1634 1635 1636 1637
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1638 1639 1640 1641
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1642
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1643
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1644 1645 1646 1647
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1648
                attrs={
Q
Qiao Longfei 已提交
1649
                    "sections": height_sections,
1650 1651
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1652 1653 1654
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1655

T
typhoonzero 已提交
1656 1657 1658 1659
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1660
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1673
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1674 1675
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1676 1677
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1678
                return param_shape
1679 1680 1681
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1682 1683 1684
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1685 1686
        elif op_type == "sgd":
            pass
1687 1688 1689 1690
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1691 1692
        return orig_shape

1693 1694
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1695
        orig_var_name = ""
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1706
        else:
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1729
            return None
1730 1731 1732 1733
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1734
        else:
1735
            merged_var_name = orig_varname
1736 1737

        merged_var = pserver_block.vars[merged_var_name]
1738 1739 1740
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1741
            for i in range(self.trainer_num):
1742
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1743
                                   (merged_var_name, i)
1744 1745 1746 1747
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1748 1749
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1750 1751 1752 1753 1754
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1755
        return merged_var
T
typhoonzero 已提交
1756

W
Wu Yi 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1819
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1820 1821
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
1822
        program = optimize_block.program
T
typhoonzero 已提交
1823
        pserver_block = program.global_block()
1824
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1835 1836 1837 1838
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1839
        for key in opt_op.input_names:
T
typhoonzero 已提交
1840
            if key == "Grad":
W
Wu Yi 已提交
1841 1842 1843
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1854
            elif key == "Param":
W
Wu Yi 已提交
1855
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1856 1857
                if not param_block:
                    return
T
typhoonzero 已提交
1858
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1859
                    name=param_block.name,
T
typhoonzero 已提交
1860
                    persistable=True,
T
typhoonzero 已提交
1861 1862 1863
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1864
            elif key == "LearningRate":
1865
                # learning rate variable has already be created by non-optimize op,
1866
                # don't create it once again.
1867
                lr_varname = opt_op.input(key)[0]
1868
                if lr_varname in pserver_block.vars:
1869 1870 1871 1872 1873 1874 1875 1876 1877
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1878

T
typhoonzero 已提交
1879
        for key in opt_op.input_names:
1880
            new_shape = None
W
Wu Yi 已提交
1881
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1882
                continue
1883
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1884
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1885
            # update accumulator variable shape
1886 1887
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1888
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1889 1890 1891 1892 1893
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1894

1895
        # change output's ParamOut variable
1896 1897
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1898
        outputs["ParamOut"] = new_inputs["Param"]
1899
        optimize_block.append_op(
T
typhoonzero 已提交
1900 1901
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1902
            outputs=outputs,
G
gongweibao 已提交
1903
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1904

1905 1906 1907 1908 1909 1910
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1922
        grad_block = None
M
minqiyang 已提交
1923
        for _, g in six.iteritems(var_dict):
1924
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1925
                # skip per trainer vars
1926
                if g.name.find(".trainer_") == -1:
1927
                    # only param or grads have splited blocks
1928 1929
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1930 1931
                        grad_block = g
                        break
1932 1933
        return grad_block

Q
Qiyang Min 已提交
1934 1935 1936
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1937
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1938 1939 1940 1941
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1942
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1943 1944 1945

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1946
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1947 1948 1949 1950
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1951
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1952

Y
Yancey1989 已提交
1953
        return block.append_op(
G
gongweibao 已提交
1954
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1955 1956

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1957
        program = optimize_block.program
1958
        # Append the ops for parameters that do not need to be optimized/updated
1959 1960
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1961
        for key, varlist in six.iteritems(inputs):
1962 1963
            if not isinstance(varlist, list):
                varlist = [varlist]
1964 1965 1966
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1967
                # for inputs/outputs
1968
                grad_block = self._get_pserver_grad_param_var(
1969 1970
                    var, program.global_block().vars)
                if grad_block:
1971
                    varlist[i] = grad_block
1972
                elif var.name not in program.global_block().vars:
1973 1974 1975 1976 1977
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1978

1979 1980
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1981
        for key, varlist in six.iteritems(outputs):
1982 1983
            if not isinstance(varlist, list):
                varlist = [varlist]
1984 1985 1986
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1987 1988
                    var, program.global_block().vars)
                if grad_block:
1989
                    varlist[i] = grad_block
1990
                elif var.name not in program.global_block().vars:
1991 1992 1993 1994 1995
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1996

Y
Yancey1989 已提交
1997
        return optimize_block.append_op(
T
typhoonzero 已提交
1998
            type=opt_op.type,
T
typhoonzero 已提交
1999 2000
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2001
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2002

2003 2004 2005 2006
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2007
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2008
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2009 2010 2011 2012 2013 2014
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2015 2016
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2017 2018 2019 2020 2021 2022
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2023
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2024
        if "Param" in op.input_names and \
T
tangwei12 已提交
2025
                "LearningRate" in op.input_names:
2026 2027 2028 2029 2030 2031 2032
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2033
        if op.input("Param")[0] in param_names:
2034 2035 2036
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2037
                param = op.input("Param")[0]
T
typhoonzero 已提交
2038
                if same_or_split_var(n, param) and n != param:
2039 2040 2041
                    return True
            return False

T
typhoonzero 已提交
2042
    def _get_input_map_from_op(self, varmap, op):
2043
        """Returns a dict from op input name to the vars in varmap."""
2044
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2056
        """Returns a dict from op output name to the vars in varmap."""
2057
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2067 2068

    def _get_lr_ops(self):
2069 2070 2071
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2072 2073 2074 2075
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2076 2077 2078 2079 2080
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2081 2082 2083 2084
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2085
            if self._is_optimizer_op(op):
2086 2087 2088 2089
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2090
        block = self.origin_program.global_block()
2091 2092 2093 2094 2095
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2096

2097 2098 2099 2100 2101
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2102
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2103 2104 2105 2106 2107 2108
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2109 2110
                    # we only need to append op for once
                    break
2111
        return lr_ops
Y
Yancey1989 已提交
2112

W
Wu Yi 已提交
2113 2114 2115 2116 2117
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2118 2119
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2120 2121 2122
            return True
        return False

Y
Yancey1989 已提交
2123
    def _get_optimize_pass(self):
2124
        """
2125
        Get optimizer operators, parameters and gradients from origin_program
2126 2127
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2128
            params_grads (dict): parameter->gradient.
2129
        """
Y
Yancey1989 已提交
2130 2131 2132
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2133 2134
        # tmp set to dedup
        optimize_params = set()
2135
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2136
        for op in block.ops:
W
Wu Yi 已提交
2137
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2138
                opt_ops.append(op)
2139 2140 2141 2142 2143 2144
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2145 2146
                        params_grads.append([
                            origin_var_dict[param_name],
2147
                            origin_var_dict[grad_name]
2148
                        ])
Y
Yancey1989 已提交
2149 2150 2151
            else:
                pass
        return opt_ops, params_grads