device_context.h 12.7 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
QI JUN 已提交
4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
15
#include <functional>
16
#include <future>  // NOLINT
D
dzhwinter 已提交
17
#include <memory>
Y
yuyang18 已提交
18
#include <mutex>  // NOLINT
19
#include <string>
D
dzhwinter 已提交
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
W
wanghuancoder 已提交
23

24
#include "paddle/fluid/memory/malloc.h"
W
Wilber 已提交
25
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
26
#include "paddle/phi/backends/cpu/cpu_context.h"
27
#include "paddle/phi/backends/custom/custom_context.h"
28 29
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
30
#ifdef PADDLE_WITH_CUDA
31
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/dynload/cublas.h"
33
#include "paddle/fluid/platform/dynload/cublasLt.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
35
#include "paddle/fluid/platform/dynload/cusolver.h"
36
#include "paddle/fluid/platform/dynload/cusparse.h"
37
#include "paddle/phi/backends/gpu/gpu_context.h"
38
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
39
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
40
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
42
#endif
D
dzhwinter 已提交
43

44
#ifdef PADDLE_WITH_HIP
45
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
46 47
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
48
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
49 50 51
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
52
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
53 54
#endif

55 56 57 58
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
59
#ifdef PADDLE_WITH_MKLDNN
60
#include "dnnl.hpp"  // NOLINT
61
#include "paddle/fluid/framework/data_layout.h"
62
#include "paddle/phi/backends/onednn/onednn_context.h"
T
tensor-tang 已提交
63 64
#endif

65
#include <map>
W
wanghuancoder 已提交
66

67
#include "glog/logging.h"
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
70
#ifdef PADDLE_WITH_ASCEND_CL
71 72
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
73
#endif
74

75 76
#include "paddle/phi/backends/device_ext.h"
#include "paddle/phi/backends/stream.h"
77 78

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
79
#include "unsupported/Eigen/CXX11/Tensor"
80
#endif
Q
QI JUN 已提交
81

W
wanghuancoder 已提交
82 83 84 85 86
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

87
#ifdef PADDLE_WITH_XPU
88 89
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
90
#include "paddle/phi/backends/xpu/xpu_context.h"
91 92
#endif

93 94
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
95
#include "paddle/fluid/platform/device/npu/npu_info.h"
96 97
#endif

Q
QI JUN 已提交
98 99 100
namespace paddle {
namespace platform {

101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
102 103 104 105
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
106
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
107 108 109 110
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
111 112
#endif  // PADDLE_WITH_CUDA

113 114 115 116
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
117
  NPU = 3,
J
jianghaicheng 已提交
118
  IPU = 4,
F
fwenguang 已提交
119 120 121
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
122 123
};

124 125
DeviceType Place2DeviceType(const platform::Place& place);

126 127 128
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
129
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
130
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
131
constexpr DeviceType kMLU = DeviceType::MLU;
132

133
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
134

Y
Yang Yu 已提交
135 136 137 138 139
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
L
Leo Chen 已提交
140
  using TYPE = phi::CPUContext;
Y
Yang Yu 已提交
141 142
};

J
jianghaicheng 已提交
143 144 145 146 147 148 149 150
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
151
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
152 153 154 155 156 157 158 159 160 161
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
162
#endif
J
jianghaicheng 已提交
163

F
fwenguang 已提交
164 165 166 167 168
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
169 170
#endif

171
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
172
namespace xpu = baidu::xpu::api;
173
class XPUDeviceContext : public phi::XPUContext {
174 175 176 177 178
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
179
  xpuStream stream() const { return XPUContext::x_context()->xpu_stream; }
180 181 182 183 184 185 186 187
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

188 189 190 191 192 193
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
194
  const Place& GetPlace() const override;
195
  aclrtContext context() const;
196

197 198 199 200 201 202
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

203 204 205 206 207 208 209
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

225 226 227
 private:
  NPUPlace place_;
  aclrtContext context_;
228 229 230 231

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
247 248 249 250 251 252 253

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
254
  const Place& GetPlace() const override;
255 256 257 258 259 260 261 262 263 264 265 266 267

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

268 269 270
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
271
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
272
class EigenCudaStreamDevice;
S
sneaxiy 已提交
273

274
using CUDADeviceContext = phi::GPUContext;
Q
qijun 已提交
275

276 277
class CudnnWorkspaceHandle {
 public:
278 279
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
280 281 282 283 284 285 286 287

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
288 289 290 291
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
292 293 294 295 296 297 298 299 300 301 302 303 304
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

305
  void ReallocWorkspace(size_t required_workspace_bytes);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
322
  std::mutex* mtx_;
323 324
};

Y
Yang Yu 已提交
325 326
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
327
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
328 329
};

C
chengduoZH 已提交
330
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
331 332 333 334 335
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
336
  const Place& GetPlace() const override;
C
chengduoZH 已提交
337

C
chengduoZH 已提交
338 339 340 341 342 343 344 345 346 347 348
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
349
#endif
Q
qijun 已提交
350

T
tensor-tang 已提交
351
#ifdef PADDLE_WITH_MKLDNN
352 353
using MKLDNNDeviceContextThreadLocals = phi::OneDNNContextThreadLocals;
using MKLDNNDeviceContext = phi::OneDNNContext;
T
tensor-tang 已提交
354 355
#endif

356
#ifdef PADDLE_WITH_CUSTOM_DEVICE
357
class CustomDeviceContext : public phi::CustomContext {
358 359 360 361 362 363 364 365 366 367 368 369 370 371
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
372
  std::shared_ptr<phi::stream::Stream> stream_;
373 374 375 376 377 378 379 380 381 382 383 384
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

385 386 387 388 389 390
void EmplaceDeviceContexts(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        place_to_device_context,
    const std::vector<platform::Place>& places,
    bool disable_setting_default_stream_for_allocator);

D
dzhwinter 已提交
391 392 393
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
Y
Yang Yu 已提交
394
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
395 396 397
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
398 399 400 401
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
402
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
403 404 405 406 407 408
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

409 410
  static bool IsInitialized() { return pool != nullptr; }

411 412
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
413
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
414
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
415

Y
Yang Yu 已提交
416 417 418 419 420 421 422
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

423
  size_t size() const;
424

425
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
426 427 428 429 430
  device_contexts() const;

  static void SetDeviceContexts(
      const std::map<Place,
                     std::shared_future<std::unique_ptr<DeviceContext>>>*);
431

D
dzhwinter 已提交
432
 private:
433 434
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

D
dzhwinter 已提交
435
  static DeviceContextPool* pool;
436 437
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
438 439 440
  static thread_local const std::
      map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
          external_device_contexts_;  // not owned
D
dzhwinter 已提交
441 442 443
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
444 445
}  // namespace platform
}  // namespace paddle