layer.py 14.4 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
75 76
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
77
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
78
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
79

L
Luo Tao 已提交
80
import activation
Q
qiaolongfei 已提交
81
import data_type
Q
qiaolongfei 已提交
82

Y
Yu Yang 已提交
83
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
84

D
dangqingqing 已提交
85 86 87 88 89 90 91
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
92

Q
qiaolongfei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
108
class Layer(object):
109
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
110
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
111
        self.name = name
Q
qiaolongfei 已提交
112
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
113 114 115 116 117 118

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
119 120
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
121
                              collections.Sequence):
Q
qiaolongfei 已提交
122
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
123 124
                    context=context)
            else:
Q
qiaolongfei 已提交
125 126 127
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
128

129 130
        if self.name is None:
            return self.to_proto_impl(**kwargs)
131
        elif isinstance(self, MemoryV2):
Q
qiaolongfei 已提交
132 133 134 135
            name = self.name + "#__memory__"
            if name not in context:
                context[name] = self.to_proto_impl(**kwargs)
            return context[name]
Q
qiaolongfei 已提交
136

Q
qiaolongfei 已提交
137 138
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
139 140 141 142 143 144
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


L
Luo Tao 已提交
145 146 147
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
148 149 150
    else:
        wrapper = None

Q
qiaolongfei 已提交
151
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
152
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
153 154 155
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
156 157
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
158 159 160 161 162

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
163
            name = kwargs.get('name', None)
164
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
165 166 167 168 169 170 171 172 173 174 175
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
176
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
177

Q
qiaolongfei 已提交
178
    return V2LayerImpl
Q
qiaolongfei 已提交
179 180


Q
qiaolongfei 已提交
181 182 183 184 185 186 187
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
188
    def __init__(self, name, type, **kwargs):
189
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
190

Q
qiaolongfei 已提交
191
        self.type = type
Q
qiaolongfei 已提交
192 193
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
194 195 196 197 198

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
199
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
200 201
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
202 203
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
204 205 206
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
207 208 209 210
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223

        parent_names = ['boot_layer']
        parent_layers = dict()
        other_kwargs = dict()
        for pname in parent_names:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]

        for key in kwargs.keys():
            if key not in parent_names:
                other_kwargs[key] = kwargs[key]
        super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
        self.__kwargs__ = other_kwargs
Q
qiaolongfei 已提交
224 225 226 227 228 229 230

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
231

Q
qiaolongfei 已提交
232 233 234
        return conf_helps.memory(name=self.name, size=self.size, **args)


235
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
236 237 238 239 240
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

241 242 243 244 245 246 247 248 249 250
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
class StaticInputV2(Layer):
    def __init__(self, **kwargs):
        self.__parent_names__ = ['input']
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs
        super(StaticInputV2, self).__init__(parent_layers=parent_layers)

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.StaticInput(**args)


274 275
class RecurrentGroupV2(Layer):
    def __init__(self, name, **kwargs):
Q
qiaolongfei 已提交
276
        self.__parent_names__ = ['input', 'boot_layer']
277 278 279 280 281 282 283 284 285 286 287 288 289
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs

        super(RecurrentGroupV2, self).__init__(
            name=name, parent_layers=parent_layers)

Q
qiaolongfei 已提交
290 291 292
    wrapper = wrap_name_default(name_prefix='recurrent_group')
    __init__ = wrapper(__init__)

293
    def to_proto_impl(self, **kwargs):
Q
qiaolongfei 已提交
294
        def in_args_converter(*in_args):
295 296 297 298 299 300 301 302 303 304 305 306 307
            if not isinstance(in_args, collections.Sequence):
                in_args = [in_args]
            return [LayerOutputV2(input) for input in in_args]

        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.recurrent_group(
            name=self.name, in_args_converter=in_args_converter, **args)


308 309 310 311 312 313 314 315 316 317
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
318
        pass
319 320 321 322 323 324 325 326 327 328

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
329
        self.__inputs__ = []
330
        if input is not None:
D
dangqingqing 已提交
331
            self.__inputs__ = input
332

D
dangqingqing 已提交
333 334
        other_kwargs = dict()
        other_kwargs['name'] = name
335 336 337 338 339
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
340 341
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
342 343 344 345
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
346
            self.__inputs__.append(other)
347 348 349 350 351
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
352
        assert len(self.__inputs__) == 0
353 354 355 356 357 358 359 360 361 362 363
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
364
        return getattr(conf_helps, self.__method_name__)(**args)
365 366 367


@wrap_name_default("mixed")
D
dangqingqing 已提交
368
@wrap_act_default(act=activation.Linear())
369 370 371 372 373 374 375 376 377 378 379
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
380
LayerV2 = Layer
Q
qiaolongfei 已提交
381
data = DataLayerV2
L
Luo Tao 已提交
382 383
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
384
recurrent_group = RecurrentGroupV2
Q
qiaolongfei 已提交
385
memory = MemoryV2
Q
qiaolongfei 已提交
386

Y
Yu Yang 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
        lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left', 'right'],
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
432

433
# convert projection
D
dangqingqing 已提交
434
for prj in __projection_names__:
L
Luo Tao 已提交
435 436
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
437 438 439 440 441 442 443 444

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
445 446
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)